Impact of ESBL and MBL-producing Pseudomonas aeruginosa on Caenorhabditis elegans: assessing survival, reproductive fitness, chemotaxis behaviour, and gene expression
- Authors: Nandan J.1, Heamchandsaravanan A.R.1, Sharchil C.1, Ramachandran V.1, Perumal D.2, Balakrishnan A.1, Dhandapani P.1
-
Affiliations:
- University of Madras
- Indira Medical College and Hospitals
- Issue: Vol 102, No 6 (2025)
- Pages: 675-682
- Section: REVIEWS
- URL: https://medbiosci.ru/0372-9311/article/view/381673
- DOI: https://doi.org/10.36233/0372-9311-709
- EDN: https://elibrary.ru/GWPBSG
- ID: 381673
Cite item
Full Text
Abstract
Introduction. Nematode Caenorhabditis elegans is a key model for studying host–pathogen interactions. In our study, we explored the impact of extended-spectrum beta-lactamase (ESBL) and metallo-beta-lactamase (MBL) producing strains of Pseudomonas aeruginosa on C. elegans, examining survival, reproductive fitness, chemotaxis behaviour, and gene expression. Both ESBL and MBL-producing P. aeruginosa showed a slow killing phenotype in C. elegans, with prolonged gut colonization and reduced lifespan compared to worms fed Escherichia coli OP50.
Materials and methods. C. elegans N2 strain was exposed to ESBL/MBL-producing P. aeruginosa strains, non-resistant P. aeruginosa, and E. coli OP50. Survival, reproductive fitness, chemotaxis, and gene expression of daf-16 and age-1 were analyzed via assays and qRT-PCR.
Results. Resistant strains caused accelerated mortality, starting on day 2, while non-resistant strains had delayed mortality from day 5. This indicates that ESBL and MBL enzymes may boost P. aeruginosa's virulence. Worms exposed to these resistant strains had reduced fecundity, showing impaired reproductive fitness. Changes in chemotaxis behaviour suggested that virulence factors and quorum sensing might affect how worms seek food. Gene expression analysis revealed significant changes in daf-16, a gene involved in stress resistance and immunity, in response to ESBL and MBL strains. However, there were no significant differences in the expression of age-1, indicating other mechanisms at play besides insulin/insulin-like growth factor signalling.
Conclusion. This study highlights the complex interactions between bacterial virulence, host survival, and reproductive behaviour. By exploring the effects of antibiotic resistance on C. elegans, we offer insights into the broader implications of antibiotic-resistant infections and potential strategies for managing them.
About the authors
Janani Nandan
University of Madras
Email: jananinandan2014@gmail.com
ORCID iD: 0009-0000-9232-2784
M.Sc. (medical microbiology), researcher, Department of microbiology, Dr. A.L.M. PG Institute of Basic Medical Sciences
India, Chennai, Tamil NaduAnandhakrishnan Rajaram Heamchandsaravanan
University of Madras
Email: heamchand0314@gmail.com
ORCID iD: 0000-0003-3369-2587
M.Sc. (medical microbiology), researcher, Department of microbiology, Dr. A.L.M. PG Institute of Basic Medical Sciences
India, Chennai, Tamil NaduCharles Sharchil
University of Madras
Email: andrewchales@gmail.com
ORCID iD: 0000-0001-9055-0951
Ph.D. (Genetics), researcher, Department of genetics, Dr. A.L.M. PG Institute of Basic Medical Sciences
India, Chennai, Tamil NaduVinu Ramachandran
University of Madras
Email: vinutwin@gmail.com
ORCID iD: 0000-0002-8566-7415
Ph.D. (Genetics), researcher, Department of genetics, Dr. A.L.M. PG Institute of Basic Medical Sciences
India, Chennai, Tamil NaduDamodharan Perumal
Indira Medical College and Hospitals
Email: 17damzz@gmail.com
ORCID iD: 0000-0001-5318-6513
Ph.D. (Medical microbiology), Assistant Professor, Department of microbiology
India, Pandur, Tamil NaduAnandan Balakrishnan
University of Madras
Author for correspondence.
Email: anand_gem@yahoo.com
ORCID iD: 0000-0003-4747-3799
Ph.D. (Genetics), Assistant Professor, Department of genetics, Dr. A.L.M. PG Institute of Basic Medical Sciences
India, Chennai, Tamil NaduPrabu Dhandapani
University of Madras
Email: bruibms@gmail.com
ORCID iD: 0000-0003-2866-4338
Ph.D. (Medical microbiology), Assistant Professor and Head i/c, Department of microbiology, Dr. A.L.M. PG Institute of Basic Medical Sciences
India, Chennai, Tamil NaduReferences
- Sifri C.D., Begun J., Ausubel F.M. The worm has turned – microbial virulence modeled in Caenorhabditis elegans. Trends Microbiol. 2005;13(3):119–27. DOI: https://doi.org/10.1016/j.tim.2005.01.003
- Tan M.W., Mahajan-Miklos S., Ausubel F.M. Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc. Natl Acad. Sci. USA. 1999;96(2):715–20. DOI: https://doi.org/10.1073/pnas.96.2.715
- Tan M.W., Rahme L.G., Sternberg J.A., et al. Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. Proc. Natl Acad. Sci. U. S. A. 1999;96(5):2408–13. DOI: https://doi.org/10.1073/pnas.96.5.2408
- Kirienko N.V., Cezairliyan B.O., Ausubel F.M., Powell J.R. Pseudomonas aeruginosa PA14 pathogenesis in Caenorhabditis elegans. Methods Mol. Biol. 2014;1149:653–69. DOI: https://doi.org/10.1007/978-1-4939-0473-0_50
- Heurlier K., Dénervaud V., Haas D. Impact of quorum sensing on fitness of Pseudomonas aeruginosa. Int. J. Med. Microbiol. 2006;296(2-3):93–102. DOI: https://doi.org/10.1016/j.ijmm.2006.01.043
- Bradford P.A. Extended-spectrum beta-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin. Microbiol. Rev. 2001;14(4):933–51. DOI: https://doi.org/10.1128/CMR.14.4.933-951.2001
- Ghanem S.M., Abd El-Baky R.M., Abourehab M.A.S., et al. Prevalence of quorum sensing and virulence factor genes among Pseudomonas aeruginosa isolated from patients suffering from different infections and their association with antimicrobial resistance. Infect. Drug Resist. 2023;16:2371–85. DOI: https://doi.org/10.2147/IDR.S403441
- Moradali M.F., Ghods S., Rehm B.H. Pseudomonas aeruginosa lifestyle: a paradigm for adaptation, survival, and persistence. Front. Cell Infect. Microbiol. 2017;7:39. DOI: https://doi.org/10.3389/fcimb.2017.00039
- Riquelme S.A., Liimatta K., Wong Fok Lung T., et al. Pseudomonas aeruginosa utilizes host-derived itaconate to redirect its metabolism to promote biofilm formation. Cell Metab. 2020;31(6):1091–106.e6. DOI: https://doi.org/10.1016/j.cmet.2020.04.017
- Maurice N.M., Bedi B., Sadikot R.T. Pseudomonas aeruginosa biofilms: host response and clinical implications in lung infections. Am. J. Respir. Cell Mol. Biol. 2018;58(4):428–39. DOI: https://doi.org/10.1165/rcmb.2017-0321TR
- Edward E.A., El Shehawy M.R., Abouelfetouh A., Aboulmagd E. Prevalence of different virulence factors and their association with antimicrobial resistance among Pseudomonas aeruginosa clinical isolates from Egypt. BMC Microbiol. 2023;23(1):161. DOI: https://doi.org/10.1186/s12866-023-02897-8
- Bae I.K., Suh B., Jeong S.H., et al. Molecular epidemiology of Pseudomonas aeruginosa clinical isolates from Korea producing β-lactamases with extended-spectrum activity. Diagn. Microbiol. Infect. Dis. 2014;79(3):373–7. DOI: https://doi.org/10.1016/j.diagmicrobio.2014.03.007
- Irazoqui J.E., Troemel E.R., Feinbaum R.L., et al. Distinct pathogenesis and host responses during infection of C. elegans by P. aeruginosa and S. aureus. PLoS Pathog. 2010;6(7):e1000982. DOI: https://doi.org/10.1371/journal.ppat.1000982
- Papaioannou E., Utari P.D., Quax W.J. Choosing an appropriate infection model to study quorum sensing inhibition in Pseudomonas infections. Int. J. Mol. Sci. 2013;14(9):19309–40. DOI: https://doi.org/10.3390/ijms140919309
- Hoffmann J.A., Kafatos F.C., Janeway C.A., Ezekowitz R.A. Phylogenetic perspectives in innate immunity. Science. 1999;284(5418):1313–8. DOI: https://doi.org/10.1126/science.284.5418.1313
- Balla K.M., Troemel E.R. Caenorhabditis elegans as a model for intracellular pathogen infection. Cell. Microbiol. 2013;15(8):1313–22. DOI: https://doi.org/10.1111/cmi.12152
- Baumeister R., Schaffitzel E., Hertweck M. Endocrine signaling in Caenorhabditis elegans controls stress response and longevity. J. Endocrinol. 2006;190(2):191–202. DOI: https://doi.org/10.1677/joe.1.06856
- Zarroug S.H.O., Bajaman J.S., Hamza F.N., et al. Caenorhabditis elegans as an in vivo model for the discovery and development of natural plant-based antimicrobial compounds. Pharmaceuticals (Basel). 2023;16(8):1070. DOI: https://doi.org/10.3390/ph16081070
- Adonizio A., Kong K.F., Mathee K. Inhibition of quorum sensing-controlled virulence factor production in Pseudomonas aeruginosa by South Florida plant extracts. Antimicrob. Agents Chemother. 2008;52(1):198–203. DOI: https://doi.org/10.1128/AAC.00612-07
- Kurz C.L., Ewbank J.J. Caenorhabditis elegans: an emerging genetic model for the study of innate immunity. Nat. Rev. Genet. 2003;4(5):380–90. DOI: https://doi.org/10.1038/nrg1067
- Irazoqui J.E., Urbach J.M., Ausubel F.M. Evolution of host innate defence: insights from Caenorhabditis elegans and primitive invertebrates. Nat. Rev. Immunol. 2010;10(1):47–58. DOI: https://doi.org/10.1038/nri2689
- Mahajan-Miklos S., Tan M.W., Rahme L.G., Ausubel F.M. Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa – Caenorhabditis elegans pathogenesis model. Cell. 1999;96(1):47–56. DOI: https://doi.org/10.1016/s0092-8674(00)80958-7
- Wittkowski P., Marx-Stoelting P., Violet N., et al. Caenorhabditis elegans as a promising alternative model for environmental chemical mixture effect assessment – a comparative study. Environ. Sci. Technol. 2019;53(21):12725–33. DOI: https://doi.org/10.1021/acs.est.9b03266
- Zečić A., Braeckman B.P. DAF-16/FoxO in Caenorhabditis elegans and its role in metabolic remodeling. Cells. 2020;9(1):109. DOI: https://doi.org/10.3390/cells9010109
- Jia K., Thomas C., Akbar M., et al. Autophagy genes protect against Salmonella typhimurium infection and mediate insulin signaling-regulated pathogen resistance. Proc. Natl Acad. Sci. USA. 2009;106(34):14564–9. DOI: https://doi.org/10.1073/pnas.0813319106
- Singh V., Aballay A. Regulation of DAF-16-mediated innate immunity in Caenorhabditis elegans. J. Biol. Chem. 2009;284(51):35580–7. DOI: https://doi.org/10.1074/jbc.M109.060905
- Lin K., Dorman J.B., Rodan A., Kenyon C. daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science. 1997;278(5341):1319–22. DOI: https://doi.org/10.1126/science.278.5341.1319
- Li W.J., Wang C.W., Tao L., et al. Insulin signaling regulates longevity through protein phosphorylation in Caenorhabditis elegans. Nat. Commun. 2021;12(1):4568. DOI: https://doi.org/10.1038/s41467-021-24816-z
- Cheng C.L., Gao T.Q., Wang Z., Li D.D. Role of insulin/insulin-like growth factor 1 signaling pathway in longevity. World J. Gastroenterol. 2005;11(13):1891–5. DOI: https://doi.org/10.3748/wjg.v11.i13.1891
Supplementary files


