The adoptive transfer of regulatory B lymphocytes prevents severe damage to lung tissues during respiratory infection with the influenza A/H1N1 virus

Cover Image

Cite item

Abstract

The aim of the study is to investigate the role of regulatory B lymphocytes in the regulation of the inflammatory process in the lungs against the background of influenza virus infection (A/H1N1/WSN/1933).

Materials and methods. On the day after intranasal infection with influenza A/H1N1/WSN/1933 virus, CBA/N mice received intravenous B cells from CBA mice: Breg (induced in vitro by activators, high content of IL-10+ regulatory B cells), Bcontr (incubated in vitro without activators, IL-10 content+ minimal regulatory B cells), BPerC (isolated abdominal B cells, without in vitro incubation). On the 4th day after infection, histological changes in the lungs, the number of IgM and IgG antibody producers in the lungs and spleen, as well as the viral load in the lungs were evaluated.

Results. Intranasal infection of CBA/N mice with influenza A/H1N1/WSN/1933 virus was accompanied by pronounced morphological changes in lung tissue detected on day 4, including tissue structural disorders and cellular infiltration. The adoptive transfer of Breg the day after infection was associated with a decrease in the severity of histological signs of lung damage compared with the group without transfer. The transfer of Bcontr and BPerC was also accompanied by a decrease in the detected tissue damage, but the effect was less pronounced than with Breg transfer. In all groups with CBA B cell transfer, there was an increase in the number of IgM and IgG antibody producers in the spleen and lungs. At the same time, there were no differences in the indicator of viral load in the lungs between the compared groups.

Conclusion. The revealed prevention of severe lung tissue damage in CBA/N mice infected with influenza A/H1N1/WSN/1933 virus during the adoptive transfer of in vitro-induced regulatory B cells from CBA mice is attributable to a combination of increased immune response due to the transferred cells and the regulatory activity of IL-10+ regulatory B cells.

About the authors

Ilya N. Dyakov

I.I. Mechnikov Research Institute of Vaccines and Sera

Author for correspondence.
Email: dyakov.instmech@mail.ru
ORCID iD: 0000-0001-5384-9866

Cand. Sci. (Biol.), leading researcher, Head, Laboratory of biosynthesis of immunoglobulins, Immunology and allergology department, I. Mechnikov Research Institute of Vaccines and Sera; researcher, Laboratory of bacterial genetics, Department of medical microbiology, National Research Center for Epidemiology and Microbiology named after N.F. Gamaleya

Russian Federation, Moscow

Irina N. Chernyshova

I.I. Mechnikov Research Institute of Vaccines and Sera

Email: irina.n.chernyshova@gmail.com
ORCID iD: 0000-0001-5053-2433

Cand. Sci. (Med.), senior researcher, Laboratory of biosynthesis of immunoglobulins, Immunology and allergology department

Russian Federation, Moscow

Marina V. Gavrilova

I.I. Mechnikov Research Institute of Vaccines and Sera

Email: gavrilovamv@gmail.com
ORCID iD: 0000-0002-6936-2486

Cand. Sci. (Biol.), researcher, Laboratory of biosynthesis of immunoglobulins, Immunology and allergology department, I. Mechnikov Research Institute of Vaccines and Sera; researcher, Laboratory of bacterial genetics, Department of medical microbiology, National Research Center for Epidemiology and Microbiology named after N.F. Gamaleya

Russian Federation, Moscow

Kristina K. Bushkova

I.I. Mechnikov Research Institute of Vaccines and Sera

Email: christina_bushkova@mail.ru
ORCID iD: 0000-0002-4757-0751

researcher, Laboratory of biosynthesis of immunoglobulins, Immunology and allergology department

Russian Federation, Moscow

Artyom A. Rtishchev

I.I. Mechnikov Research Institute of Vaccines and Sera

Email: rtishchevartyom@gmail.com
ORCID iD: 0000-0002-4212-5093

researcher, Laboratory of genetics of RNA-containing viruses, Department of virology named after O.G. Andzhaparidze

Russian Federation, Moscow

Natalia E. Abayeva

I.I. Mechnikov Research Institute of Vaccines and Sera

Email: fabaeva.nata@list.ru
ORCID iD: 0000-0003-3984-959X

researcher, Laboratory of biosynthesis of immunoglobulins, Immunology and allergology department

Russian Federation, Moscow

Stanislav G. Markushin

I.I. Mechnikov Research Institute of Vaccines and Sera

Email: s.g.markushin@rambler.ru
ORCID iD: 0000-0003-0994-5337

Dr. Sci. (Med.), Head, Laboratory of genetics of RNA-containing viruses, Department of virology named after O.G. Andzhaparidze

Russian Federation, Moscow

Dmitry A. Khochenkov

N.N. Blokhin National Medical Research Center

Email: khochenkov@gmail.com
ORCID iD: 0000-0002-5694-3492

Cand. Sci. (Biol.), Head, Laboratory of biomarkers and mechanisms of tumor angiogenesis

Russian Federation, Moscow

Irina D. Bulgakova

I.I. Mechnikov Research Institute of Vaccines and Sera; Sechenov University

Email: bulgakova_i_d@staff.sechenov.ru
ORCID iD: 0000-0002-2629-9616

assistant, Microbiology, virology and immunology department named after Academician A.A. Vorobyev, Institute of Public Health named after F.F. Erisman, Sechenov University; junior researcher, Laboratory of molecular immunology, I. Mechnikov Research Institute of Vaccines and Sera

Russian Federation, Moscow; Moscow

Nadezhda A. Snegireva

I.I. Mechnikov Research Institute of Vaccines and Sera

Email: snegireva.nadezda@gmail.com
ORCID iD: 0000-0002-5399-3224

researcher, Laboratory of biosynthesis of immunoglobulins, Immunology and allergology department

Russian Federation, Moscow

Oxana A. Svitich

I.I. Mechnikov Research Institute of Vaccines and Sera

Email: svitichoa@yandex.ru
ORCID iD: 0000-0003-1757-8389

Dr. Sci. (Med.), Professor, Full Member of the Russian Academy of Sciences, Director

Russian Federation, Moscow

References

  1. McCarthy M.K., Procario M.C., Twisselmann N., et al. Proinflammatory effects of interferon gamma in mouse adenovirus 1 myocarditis. J. Virol. 2015;89(1):468–79. DOI: https://doi.org/10.1128/JVI.02077-14
  2. Tao W., Zhang G., Liu C., et al. Low-dose LPS alleviates early brain injury after SAH by modulating microglial M1/M2 polarization via USP19/FOXO1/IL-10/IL-10R1 signaling. Redox Biol. 2023;66:102863. DOI: https://doi.org/10.1016/j.redox.2023.102863
  3. Niederman M.S., Torres A. Respiratory infections. Eur. Respir. Rev. 2022;31(166):220150. DOI: https://doi.org/10.1183/16000617.0150-2022
  4. GBD 2016 Lower Respiratory Infections Collaborators. Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory infections in 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Infect. Dis. 2018;18(11):1191–210. DOI: https://doi.org/10.1016/S1473-3099(18)30310-4
  5. Nair H., Brooks W.A., Katz M., et al. Global burden of respiratory infections due to seasonal influenza in young children: a systematic review and meta-analysis. Lancet. 2011;378(9807):1917–30. DOI: https://doi.org/10.1016/S0140-6736(11)61051-9
  6. Корчевая Е.Р., Грачева А.В., Дьяков И.Н. и др. Живые аттенуированные вакцины против COVID-19: подходы к разработке и перспективы клинического применения. Журнал микробиологии, эпидемиологии и иммунобиологии. 2023;100(3):225–236. Korchevaya E.R., Gracheva A.V., Dyakov I.N., et al. Live attenuated COVID-19 vaccines: approaches to development and prospects for clinical use. Journal of microbiology, epidemiology and immunobiology. 2023;100(3):225–236. DOI: https://doi.org/10.36233/0372-9311-404
  7. Брико Н.И., Коршунов В.А., Краснова С.В. и др. Клинико-эпидемиологические особенности пациентов, госпитализированных с COVID-19 в различные периоды пандемии в Москве. Журнал микробиологии, эпидемиологии и иммунобиологии. 2022;99(3):287–299. Briko N.I., Korshunov V.A., Krasnova S.V., et al. Clinical and epidemiological characteristics of hospitalized patients with COVID-19 during different pandemic periods in Moscow. Journal of microbiology, epidemiology and immunobiology. 2022;99(3):287–299. DOI: https://doi.org/10.36233/0372-9311-272
  8. Gusev E., Sarapultsev A., Solomatina L., Chereshnev V. SARS-CoV-2-specific immune response and the pathogenesis of COVID-19. Int. J. Mol. Sci. 2022;23(3):1716. DOI: https://doi.org/10.3390/ijms23031716
  9. Zanza C., Romenskaya T., Manetti A.C., et al. Cytokine storm in COVID-19: immunopathogenesis and therapy. Medicina (Kaunas). 2022;58(2):144. DOI: https://doi.org/10.3390/medicina58020144
  10. Brandes M., Klauschen F., Kuchen S., Germain R.N. A systems analysis identifies a feedforward inflammatory circuit leading to lethal influenza infection. Cell. 2013;154(1):197–212. DOI: https://doi.org/10.1016/j.cell.2013.06.013
  11. Mauad T., Hajjar L.A., Callegari G.D., et al. Lung pathology in fatal novel human influenza A (H1N1) infection. Am. J. Respir. Crit. Care Med. 2010;181(1):72–9. DOI: https://doi.org/10.1164/rccm.200909-1420OC
  12. Camp J.V., Bagci U., Chu Y.K., et al. Lower respiratory tract infection of the ferret by 2009 H1N1 pandemic influenza A virus triggers biphasic, systemic, and local recruitment of neutrophils. J. Virol. 2015;89(17):8733–48. DOI: https://doi.org/10.1128/JVI.00817-15
  13. Almutairi F., Sarr D., Tucker S.L., et al. RGS10 reduces lethal influenza infection and associated lung inflammation in mice. Front. Immunol. 2021;12:772288. DOI: https://doi.org/10.3389/fimmu.2021.772288
  14. Yao D., Bao L., Li F., et al. H1N1 influenza virus dose dependent induction of dysregulated innate immune responses and STAT1/3 activation are associated with pulmonary immunopathological damage. Virulence. 2022;13(1):1558–72. DOI: https://doi.org/10.1080/21505594.2022.2120951
  15. Herold S., Becker C., Ridge K.M., Budinger G.R. Influenza virus-induced lung injury: pathogenesis and implications for treatment. Eur. Respir. J. 2015;45(5):1463–78. DOI: https://doi.org/10.1183/09031936.00186214
  16. Dikiy S., Rudensky A.Y. Principles of regulatory T cell function. Immunity. 2023;56(2):240–55. DOI: https://doi.org/10.1016/j.immuni.2023.01.004
  17. Jansen K., Cevhertas L., Ma S., et al. Regulatory B cells, A to Z. Allergy. 2021;76(9):2699–715. DOI: https://doi.org/10.1111/all.14763
  18. Rosser E.C., Mauri C. Regulatory B cells: origin, phenotype, and function. Immunity. 2015;42(4):607–12. DOI: https://doi.org/10.1016/j.immuni.2015.04.005
  19. Catalán D., Mansilla M.A., Ferrier A., et al. Immunosuppressive mechanisms of regulatory B cells. Front. Immunol. 2021;12:611795. DOI: https://doi.org/10.3389/fimmu.2021.611795
  20. Martin F., Kearney J.F. B1 cells: similarities and differences with other B cell subsets. Curr. Opin. Immunol. 2001;13(2):195–201. DOI: https://doi.org/10.1016/s0952-7915(00)00204-1
  21. Suchanek O., Clatworthy M.R. Homeostatic role of B-1 cells in tissue immunity. Front. Immunol. 2023;14:1106294. DOI: https://doi.org/10.3389/fimmu.2023.1106294
  22. Liu F., Dai W., Li C., et al. Role of IL-10-producing regulatory B cells in modulating T-helper cell immune responses during silica-induced lung inflammation and fibrosis. Sci. Rep. 2016;6:28911. DOI: https://doi.org/10.1038/srep28911
  23. Chen Y., Li C., Lu Y., et al. IL-10-producing CD1dhiCD5+ regulatory B cells may play a critical role in modulating immune homeostasis in silicosis patients. Front. Immunol. 2017;8:110. DOI: https://doi.org/10.3389/fimmu.2017.00110
  24. Habener A., Behrendt A.K., Skuljec J., et al. B cell subsets are modulated during allergic airway inflammation but are not required for the development of respiratory tolerance in a murine model. Eur. J. Immunol. 2017;47(3):552–62. DOI: https://doi.org/10.1002/eji.201646518
  25. Braza F., Chesne J., Durand M., et al. A regulatory CD9(+) B-cell subset inhibits HDM-induced allergic airway inflammation. Allergy. 2015;70(11):1421–31. DOI: https://doi.org/10.1111/all.12697
  26. Gao X., Ren X., Wang Q., et al. Critical roles of regulatory B and T cells in helminth parasite-induced protection against allergic airway inflammation. Clin. Exp. Immunol. 2019;198(3):390–402. DOI: https://doi.org/10.1111/cei.13362
  27. Gautam A., Park B.K., Kim T.H., et al. Peritoneal cells mediate immune responses and cross-protection against influenza A virus. Front. Immunol. 2019;10:1160. DOI: https://doi.org/10.3389/fimmu.2019.01160
  28. Wang X., Ma K., Chen M., et al. IL-17A promotes pulmonary B-1a cell differentiation via induction of Blimp-1 expression during influenza virus infection. PLoS Pathog. 2016;12(1):e1005367. DOI: https://doi.org/10.1371/journal.ppat.1005367
  29. Дьяков И.Н., Сидорова Е.В. Субпопуляции В-лимфоцитов и влияние микроокружения на их функциональную активность. Пульмонология. 2010;(5):116–123. Dyakov I.N., Sidorova E.V. B-lymphocyte subpopulations: microenvironmental influence on functional activity. Pulmonology. 2010;(5):116–123. (In Russ.) EDN: https://elibrary.ru/LQBZTQ
  30. Дьяков И.Н. Влияние микроокружения на функциональную активность В лимфоцитов. Дис. … канд. биол. наук. М.; 2009. Dyakov I.N. Influence of the microenvironment on the functional activity of B lymphocytes. Diss. … Cand. Sci. (Biol.). Moscow; 2009. EDN: https://elibrary.ru/NKTUST
  31. Дьяков И.Н., Гаврилова М.В., Чернышова И.Н., Сидорова Е.В. Влияние микроокружения на функциональную активность В-лимфоцитов мыши. Биологические мембраны. 2008;25(5):360–6. Dyakov I.N., Gavrilova M.V., Chernyshova I.N., Sidorova E.V. The effect of the microenvironment on the functional activity of mouse B-lymphocytes. Biological Membranes. 2008;25(5):360–6. EDN: https://elibrary.ru/scgydb

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Dyakov I.N., Chernyshova I.N., Gavrilova M.V., Bushkova K.K., Rtishchev A.A., Abayeva N.E., Markushin S.G., Khochenkov D.A., Bulgakova I.D., Snegireva N.A., Svitich O.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).