Method for forming a static biofilm on various surfaces to evaluate the effectiveness of disinfectants

Cover Image

Cite item

Abstract

Introduction. In most cases, microorganisms are presented on abiotic surfaces in a state of static biofilm, which determines their resistance to environmental influences, as well as disinfectants. Disinfection regimes for facilities developed by traditional conventional methods using planktonic forms of microorganisms do not provide the required level of disinfection under these conditions. Therefore, it is important to create and validate methods for the formation of static biofilms on surfaces and to study the possibility of their use to assess the effectiveness of disinfectants in the development of disinfection regimes for surfaces in rooms, furniture, appliances, sanitary equipment, etc.

Materials and methods. Microbiological methods, cultural and microscopic were used in the work. The developed new method for evaluating the effectiveness of disinfectants differs in that the microorganisms on the surface of the test objects were in a state of static biofilm. To form it, a suspension of the test microorganism was applied to the test surface, prepared in a GRM broth and incubated in a thermostat at 37°C for 24 hours. The presence of biofilm on the test surface is confirmed by microscopic method. After that, the effectiveness of disinfectants was evaluated.

Results. Using the new method, insufficient activity of disinfectants was shown in concentrations recommended for use by the instructions: tablets based on sodium salt of SDIC at a concentration of 0.03–0.06% for active chlorine, HP at a concentration of 3.0–6.0% and ADBAС at a concentration of 0.25–0.5%. When treating test objects with disinfectant solutions at these concentrations, disinfection was below the 99.99% criterion. To achieve the desired effect, the concentration of working solutions of disinfectants had to be increased for the sodium salt of SDIC to 0.1% for active chlorine, HP to 8.0%, and ADBAС to 1.0%.

Conclusion. The proposed method of forming a static biofilm on abiotic surfaces is a tool for evaluating the effectiveness and developing adequate disinfection regimes for various types of surfaces for practical use.

About the authors

Lyudmila S. Fedorova

Scientific Research Institute for Systems Biology and Medicine

Author for correspondence.
Email: fedorova-ls@yandex.ru
ORCID iD: 0000-0002-3345-2631

D. Sci. (Med.), Professor, Head, Laboratory of overcoming microbial resistance

Russian Federation, Moscow

Anastasia V. Ilyakova

F.F. Erisman Federal Scientific Center of Hygiene

Email: ilyakova.av@fncg.ru
ORCID iD: 0000-0002-1867-3495

researcher, Department of disinfection and sterilization, Institute of disinfectology, Institute of Disinfectology

Russian Federation, Moscow

Alina S. Ivkina

Scientific Research Institute for Systems Biology and Medicine

Email: alinaIvkina21@mail.ru
ORCID iD: 0009-0005-7886-6159

junior researcher, Laboratory of overcoming microbial resistance

Russian Federation, Moscow

Stepan P. Dudik

Scientific Research Institute for Systems Biology and Medicine

Email: stepan_maestro@mail.ru
ORCID iD: 0000-0002-3157-5902

junior researcher, Micro- and nanofluidics laboratory

Russian Federation, Moscow

Elena N. Ilina

Scientific Research Institute for Systems Biology and Medicine

Email: ilinaen@gmail.com
ORCID iD: 0000-0003-0130-5079

D. Sci. (Biol.), Professor, Corresponding Member of the Russian Academy of Sciences, Deputy director for research

Russian Federation, Moscow

References

  1. Gutiérrez D., Hidalgo-Cantabrana C., Rodríguez A., et al. Monitoring in real time the formation and removal of biofilms from clinical related pathogens using an impedance-based technology. PLoS One. 2016;11(10):e0163966. DOI: https://doi.org/10.1371/journal.pone.0163966
  2. Flemming H.C., Wingender J. The biofilm matrix. Nat. Rev. Microbiol. 2010;8(9):623–33. DOI: https://doi.org/10.1038/nrmicro2415
  3. Charron R., Boulanger M., Briandet R., Bridier A. Biofilms as protective cocoons against biocides: from bacterial adaptation to One Health issues. Microbiology (Reading). 2023; 169(6):001340. DOI: https://doi.org/10.1099/mic.0.001340
  4. Reiferth V.M., Holtmann D., Müller D. Flexible biofilm monitoring device. Eng. Life Sci. 2022;22(12):796–802. DOI: https://doi.org/10.1002/elsc.202100076
  5. Rather M.A., Gupta K., Mandal M. Microbial biofilm: formation, architecture, antibiotic resistance, and control strategies. Braz. J. Microbiol. 2021;52(4):1701–18. DOI: https://doi.org/10.1007/s42770-021-00624-x
  6. Vieira-da-Silva B., Castanho M.A.R.B. The structure and matrix dynamics of bacterial biofilms as revealed by antimicrobial peptides' diffusion. J. Pept. Sci. 2023;29(6):3470. DOI: https://doi.org/10.1002/psc.3470
  7. Савилов Е.Д., Маркова Ю.А., Немченко У.М. и др. Способность к биопленкообразованию у возбудителей инфекций, выделенных от пациентов крупного многопрофильного детского стационара. Тихоокеанский медицинский журнал. 2020;(1):32–5. Savilov E.D., Markova Y.A., Nemchenko U.M., et al. Ability to biofilm formation in infectious agents isolated from patients of a large general children’s hospital. Pacific Medical Journal. 2020;(1):32–5. DOI: https://doi.org/10.34215/1609-1175-2020-1-32-35 EDN: https://elibrary.ru/tfjenu
  8. Тутельян А.В., Романова Ю.М., Маневич Б.В. и др. Методы борьбы с биологическими плёнками на пищевых производствах. Молочная промышленность. 2020;(11):48–53. Tutelyan A.V., Romanova Yu.M., Manevich B.V., et al. Biofilm control methods in food production. Dairy Industry. 2020;(11):48–53. EDN: https://elibrary.ru/dezcuf
  9. Bridier A., Briandet R., Thomas V., Dubois-Brissonnet F. Resistance of bacterial biofilms to disinfectants: a review. Biofouling. 2011;27(9):1017–32. DOI: https://doi.org/10.1080/08927014.2011.626899
  10. Романова Ю.М., Тутельян А.В., Синицын А.П. и др. Ферменты из группы карбогидраз разрушают структуру матрикса биопленок грамположительных и грамотрицательных бактерий. Медицинский алфавит. 2019;4(34):40–5. Romanova Yu.M., Tutelyan A.V., Sinitsyn A.P., et al. Enzymes from carbohydrase group destroy biofilm matrix of gram-positive and gram-negative bacteria. Medical Alphabet. 2019;4(34):40–5. DOI: https://doi.org/10.33667/2078-5631-2019-4-34(409)-40-45 EDN: https://elibrary.ru/aaqeor
  11. Алешукина А.В., Голошва Е.В., Твердохлебова Т.И. Исследование влияния дезинфицирующих средств на биопленкообразующие неферментирующие бактерии. Известия вузов. Северо-Кавказский регион. Серия: Естественные науки. 2020;(1):89–94. Aleshukina A.V., Goloshva E.V., Tverdokhlebova T.I. Investigation of the effect of disinfectants on biofilm forming non-fermenting bacteria. Bulletin of Higher Educational Institutions. North Caucasus Region. Natural Sciences. 2020;(1):89–94. DOI: https://doi.org/10.18522/1026-2237-2020-1-89-94 EDN: https://elibrary.ru/fbbrcg
  12. Шипицына И.В., Осипова Е.В. Влияние дезинфицирующих средств на рост биопленки, образованной штаммами К. pneumoniae. Медицинский алфавит. 2022;(35):37–41. Shipitsyna I.V., Osipova E.V. Influence of disinfectants on growth of biofilm formed by K. pneumoniae strains. Medical Alphabet. 2022;(35):37–41. DOI: https://doi.org/10.33667/2078-5631-2022-35-37-41 EDN: https://elibrary.ru/axdvzl
  13. Федорова Л.С., Ильякова А.В. Сравнительная оценка эффективности воздействия дезинфицирующих веществ на микроорганизмы в биоплёнке. Журнал микробиологии, эпидемиологии и иммунобиологии. 2023;100(5):302–9. Fedorova L.S., Ilyakova A.V. Comparative evaluation of disinfectant efficacy against biofilm-residing microorganisms. Journal of Microbiology, Epidemiology and Immunobiology. 2023;100(5):302–9. DOI: https://doi.org/10.36233/0372-9311-422 EDN: https://elibrary.ru/uhrcap
  14. Winans J.B., Wucher B.R., Nadell C.D. Multispecies biofilm architecture determines bacterial exposure to phages. PLoS Biol. 2022;20(12):e3001913. DOI: https://doi.org/10.1371/journal.pbio.3001913
  15. Günther F., Scherrer M., Kaiser S.J., et al. Comparative testing of disinfectant efficacy on planktonic bacteria and bacterial biofilms using a new assay based on kinetic analysis of metabolic activity. J. Appl. Microbiol. 2017;122(3):625–33. DOI: https://doi.org/10.1111/jam.13358
  16. Iñiguez-Moreno M., Gutiérrez-Lomelí M., Avila-Novoa M.G. Kinetics of biofilm formation by pathogenic and spoilage microorganisms under conditions that mimic the poultry, meat, and egg processing industries. Int. J. Food Microbiol. 2019;303:32–41. DOI: https://doi.org/10.1016/j.ijfoodmicro.2019.04.012
  17. Wang Y., Sun L., Hu L., et al. Adhesion and kinetics of biofilm formation and related gene expression of Listeria monocytogenes in response to nutritional stress. Food Res. Int. 2022;156:111143. DOI: https://doi.org/10.1016/j.foodres.2022.111143
  18. Crivello G., Fracchia L., Ciardelli G., et al. In vitro models of bacterial biofilms: innovative tools to improve understanding and treatment of infections. Nanomaterials (Basel). 2023;13(5):904. DOI: https://doi.org/10.3390/nano13050904
  19. Coenye T., Goeres D., Van Bambeke F., Bjarnsholt T. Should standardized susceptibility testing for microbial biofilms be introduced in clinical practice? Clin. Microbiol. Infect. 2018;24(6):570–2. DOI: https://doi.org/10.1016/j.cmi.2018.01.003
  20. Rumbaugh K.P., Whiteley M. Towards improved biofilm models. Nat. Rev. Microbiol. 2025;23(1):57–66. DOI: https://doi.org/10.1038/s41579-024-01086-2
  21. Niboucha N., Goetz C., Sanschagrin L., et al. Comparative study of different sampling methods of biofilm formed on stainless-steel surfaces in a CDC biofilm reactor. Front. Microbiol. 2022;13:892181. DOI: https://doi.org/10.3389/fmicb.2022.892181
  22. Almatroudi A., Hu H., Deva A., et al. A new dry-surface biofilm model: an essential tool for efficacy testing of hospital surface decontamination procedures. J. Microbiol. Methods. 2015;117:171–6. DOI: https://doi.org/10.1016/j.mimet.2015.08.003
  23. Ledwoch K., Vickery K., Maillard J.Y. Dry surface biofilms: what you need to know. Br. J. Hosp. Med. (Lond.). 2022;83(8): 1–3. DOI: https://doi.org/10.12968/hmed.2022.0274
  24. Буйлова И.А., Гунар О.В. Практические аспекты применения валидационных параметров на примере методик определения количественного содержания микроорганизмов в лекарственных препаратах. Ведомости Научного центра экспертизы средств медицинского применения. Регуляторные исследования и экспертиза лекарственных средств. 2020;10(4):267–72. Buylova I.A., Gunar O.V. Validation parameters as applied to methods for quantification of microorganisms in medicinal products. Bulletin of the Scientific Centre for Expert Evaluation of Medicinal Products. Regulatory Research and Medicine Evaluation. 2020;10(4):267–72. DOI: https://doi.org/10.30895/1991-2919-2020-10-4-267-272 EDN: https://elibrary.ru/ukqgpi
  25. Camaró-Sala M.L., Martínez-García R., Olmos-Martínez P., et al. Validation and verfication of microbiology methods. Enferm. Infecc. Microbiol. Clin. 2015;33(7):e31–6. DOI: https://doi.org/10.1016/j.eimc.2013.11.010
  26. Otter J.A., Vickery K., Walker J.T., et al. Surface-attached cells, biofilms and biocide susceptibility: implications for hospital cleaning and disinfection. J. Hosp. Infect. 2015;89(1):16–27. DOI: https://doi.org/10.1016/j.jhin.2014.09.008
  27. Ledwoch K., Dancer S.J., Otter J.A., et al. Beware biofilm! Dry biofilms containing bacterial pathogens on multiple healthcare surfaces; a multi-centre study. J. Hosp. Infect. 2018;100(3): e47–56. DOI: https://doi.org/10.1016/j.jhin.2018.06.028
  28. Costa D.M., Johani K., Melo D.S., et al. Biofilm contamination of high-touched surfaces in intensive care units: epidemiology and potential impacts. Lett. Appl. Microbiol. 2019;68(4): 269–76. DOI: https://doi.org/10.1111/lam.13127
  29. Шестопалов Н.В., Фёдорова Л.С., Скопин А.Ю. Об антимикробной активности и минимальных эффективных концентрациях химических соединений, входящих в состав дезинфекционных средств. Гигиена и санитария. 2019;98(10):1031–6. Shestopalov N.V., Fedorova L.S., Skopin A.Yu. Antimicrobial activity and minimum effective concentrations of chemical compounds found in disinfectants. Gigiena i Sanitaria (Hygiene and Sanitation, Russian journal). 2019;98(10):1031–6. EDN: https://elibrary.ru/rjkblp
  30. Yang Z., Khan S.A., Walsh L.J., et al. Classical and modern models for biofilm studies: a comprehensive review. Antibiotics (Basel). 2024;13(12):1228. DOI: https://doi.org/10.3390/antibiotics13121228
  31. Qian W., Li X., Yang M., et al. Relationship between antibiotic resistance, biofilm formation, and biofilm-specific resistance in Escherichia coli isolates from Ningbo, China. Infect. Drug Resist. 2022;15:2865–78. DOI: https://doi.org/10.2147/idr.s363652

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Fedorova L.S., Ilyakova A.V., Ivkina A.S., Dudik S.P., Ilina E.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).