ИССЛЕДОВАНИЕ БИМЕТАЛЛИЧЕСКИХ НИКЕЛЕВЫХ КАТАЛИЗАТОРОВ ДЛЯ ТЕХНОЛОГИИ ЗАПАСАНИЯ ВОДОРОДА С ИСПОЛЬЗОВАНИЕМ МЕТИЛЦИКЛОГЕКСАНА

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В работе представлены результаты изучения свойств массивных никелевых катализаторов Cu/Ni-SiO2, Zn/Ni-SiO2, Sn/Ni-SiO2 (75 мас. % Ni) обратимых процессов гидрирования толуола и дегидрирования метилциклогексана, которые применяются для технологии запасания водорода с использованием жидких органических носителей. Проведены комплексные физико-химические исследования (низкотемпературная адсорбция N2, рентгенофазовый анализ, хемосорбция CO, температурно-программируемые восстановление водородом и десорбция толуола). Установлено, что модификация никелевых катализаторов медью, цинком и оловом существенно влияет на структуру активных фаз и каталитические свойства. Наибольшая селективность образования толуола в процессе дегидрирования метилциклогексана зафиксирована в присутствии цинк- и олово-модифицированных катализаторов – 97 и 99% соответственно. Полученные данные подтверждают возможность создания эффективных никелевых катализаторов дегидрирования жидких органических носителей водорода без применения благородных металлов.

Об авторах

С. А. Степаненко

ФГБУН ФИЦ Институт катализа им. Г.К. Борескова СО РАН

Email: stepanenko@catalysis.ru
Новосибирск, Россия

А. П. Коскин

ФГБУН ФИЦ Институт катализа им. Г.К. Борескова СО РАН

Новосибирск, Россия

В. А. Яковлев

ФГБУН ФИЦ Институт катализа им. Г.К. Борескова СО РАН

Новосибирск, Россия

Список литературы

  1. Концепция развития водородной энергетики в Российской Федерации. Утверждена распоряжением правительством РФ от 05.08.2021 № 2162-Р, 2021. P. 1.
  2. Макарян И.А., Седов И.В. Максимов А.Л. Хранение водорода с использованием жидких органических носителей (обзор) // Журнал прикладной химии. 2020. Т. 93. № 12. С. 1716.
  3. Niermann M., Beckendorff A., Kaltschmitt M., Bonhoff K. Liquid Organic Hydrogen Carrier (LOHC) – Assessment based on chemical and economic properties // Int. J. Hydrogen Energy. 2019. V. 44. № 13. P. 6631.
  4. Spatolisano E., Matichecchia A., Pellegrini L.A., de Angelis A.R., Cattaneo S., Roccaro E. Toluene as effective LOHC: detailed techno-economic assessment to identify challenges and opportunities. 2023. P. 3245–3250.
  5. Perreault P., Van Hoecke L., Pourfallah H., Kummamuru N.B., Boruntea C.R., Preuster P. Critical challenges towards the commercial rollouts of a LOHC-based H2 economy // Curr. Opin. Green Sustain. Chem. 2023. V. 41. Art. 100836.
  6. Sisakova K., Podrojkova N., Orinakova R., Orinak A. Novel catalysts for dibenzyltoluene as a potential liquid organic hydrogen carrier use-A mini-review // Energy Fuels. 2021. V. 35. № 9. P. 7608.
  7. Wang Q., Le K., Lin Y., Yin W., Lin Y., Alekseeva M.V., Yakovlev V.A., Koskin A.P., Yang C., Qiu, T. Investigation on catalytic distillation dehydrogenation of perhydro-benzyltoluene: Reaction kinetics, modeling and process analysis // Chem. Eng. J. 2024. V. 482. Art. 148591.
  8. Stepanenko S.A., Shivtsov D.M., Koskin A.P., Koskin I.P., Kukushkin R.G., Yeletsky P.M., Yakovlev V.A. N-Heterocyclic molecules as potential liquid organic hydrogen carriers: reaction routes and dehydrogenation efficacy // Catalysts. 2022. V. 12. № 10. P. 1260.
  9. Stepanenko S.A., Koskin A.P., Kukushkin R.G., Yeletsky P.M. State-of-art of liquid hydrogen carriers: trends in the selection of organic molecules // Curr. Org. Chem. 2023. V. 27. № 19. P. 1677.
  10. Koskin A.P., Zhang J., Belskaya O.B., Bulavchenko O.A., Konovalova D.A., Stepanenko S.A., Ishchenko A.V., Danilova I.G., Yurpalov V.L., Larichev Y.V., Kukushkin R.G. Efficiency of high-loaded nickel catalysts modified by Mg in hydrogen storage/extraction using quinoline/decahydroquinoline pair as LOHC substrates // J. Magnes. Alloy. 2024. V. 12. № 8. P. 3245.
  11. Tan R., Ji Q., Ling Y., Li L. Advances in liquid organic hydrogen carriers: developing efficient dehydrogenation strategies // Chem. Commun. 2024. V. 60. № 63. P. 8186.
  12. Dai X., Verma R., Zhang X., Bai J., Verma S.K., Yun H., Wang J., Dixit C.K., Verma S.K. Critical analysis on catalytic methylcyclohexane dehydrogenation reaction: A review // Int. J. Hydrogen Energy. 2025. V. 141. P. 691.
  13. Шивцов Д.М., Афонникова С.Д., Мишаков И.В., Ведягин А.А. Палладийсодержащие катализаторы на основе функционализованных УНВ для дегидрирования метилциклогексана // Кинетика и Катализ. 2023. Т. 64. № 6. С. 857.
  14. Gao J., Li N., Zhang D., Zhao S., Zhao Y. The progress of research based on methylcyclohexane dehydrogenation technology: A review // Int. J. Hydrogen Energy. 2024. V. 85. P. 865.
  15. Alghamdi H.S., Ali A., Ajeebi A.M., Jedidi A., Sanhoob M., Aktary M., Shabi A.H., Usman M., Alghamdi W., Alzahrani S., Abdul Aziz M. Catalysts for liquid organic hydrogen carriers (LOHCs): Efficient storage and transport for renewable energy // Chem. Rec. 2024. V. 24. № 11, e202400082.
  16. Zhou M.J., Miao Y., Gu Y., Xie Y. Recent advances in reversible liquid organic hydrogen carrier systems: from hydrogen carriers to catalysts // Adv. Mater. 2024. V. 36. № 37. P. 1.
  17. Al-ShaikhAli A. H., Jedidi A., Cavallo L., & Takanabe K. Non-precious bimetallic catalysts for selective dehydrogenation of an organic chemical hydride system // Chem. Commun. 2015. V. 51. № 65. P. 12931.
  18. Al-ShaikhAli A. H., Jedidi A., Anjum D. H., Cavallo L., Takanabe K. Kinetics on NiZn bimetallic catalysts for hydrogen evolution via selective dehydrogenation of methylcyclohexane to toluene // ACS Catal. 2017. V. 7. № 3. P. 1592.
  19. Patil S.P., Pande J.V., Biniwale R.B. Non-noble Ni–Cu/ACC bimetallic catalyst for dehydrogenation of liquid organic hydrides for hydrogen storage // Int. J. Hydrogen Energy. 2013. V. 38. № 35. P. 15233.
  20. Xia Z., Liu H., Lu H., Zhang Z., Chen Y. Study on catalytic properties and carbon deposition of Ni–Cu/SBA15 for cyclohexane dehydrogenation // Appl. Surf. Sci. 2017. V. 422. P. 905.
  21. Ermakova M.A., Ermakov D.Y. High-loaded nickel-silica catalysts for hydrogenation, prepared by solgel: Route – Structure and catalytic behavior // Appl. Catal. A: Gen. 2003. V. 245. № 2. P. 277.
  22. Ermakova M.A., Ermakov D.Y., Cherepanova S.V., Plyasova L.M. Synthesis of ultradispersed nickel particles by reduction of high-loaded NiO–SiO2 systems prepared by heterophase sol-gel method // J. Phys. Chem. B. 2002. V. 106. № 46. P. 11922.
  23. Gor G. Y., Thommes M., Cychosz K. A., Neimark A. V. Quenched solid density functional theory method for characterization of mesoporous carbons by nitrogen adsorption // Carbon. 2012. V. 50. № 4. P. 1583.
  24. Zhu T., Song H., Li F., Chen Y. Hydrodeoxygenation of Benzofuran over Bimetallic Ni–Cu/γ-Al2O3 Catalysts // Catalysts. 2020. V. 10. № 3. P. 274.
  25. Obeso-Estrella R., Yocupicio-Gaxiola R.I., Flores-Sanchez L.A., Quintana-Melgoza J.M., Valdez R., Simakov A., Petranovskii V. Influence of temperature and volume ratio of Cu:Ni exchange solutions on the chemical properties of the guest metals in prepared CuNi–mordenite materials: Evidence of direct competition between copper and nickel ions // Micropor. Mesopor. Mater. 2023. V. 362. Art. 112797.
  26. Loricera C.V., Castaño P., Infantes-Molina A., Hita I., Gutiérrez A., Arandes J.M., Fierro J.L.G., Pawelec B. Designing supported ZnNi catalysts for the removal of oxygen from bio-liquids and aromatics from diesel // Green Chem. 2012. V. 14. № 10. P. 2759.
  27. Golubina E.V., Lokteva E.S., Erokhin A.V., Murzin V.Y., Chernikova V.S., Veligzhanin A.A. Formation of active centers of nickel–zinc catalysts deposited on the nanodiamond for the selective hydrogenation of phenylacetylene // Russ. J. Phys. Chem. A. 2021. V. 95. № 3. P. 492.
  28. Chen L.C., Lin S.D. The ethanol steam reforming over Cu–Ni/SiO2 catalysts: Effect of Cu/Ni ratio // Appl. Catal. B: Environ. 2011. V. 106. № 3–4. P. 639.
  29. Bykova M.V., Ermakov D.Y., Khromova S.A., Smirnov A.A., Lebedev M.Y., Yakovlev V.А. Stabilized Nibased catalysts for bio-oil hydrotreatment: Reactivity studies using guaiacol // Catal. Today. 2014. V. 220– 222. P. 21.
  30. Mikhnenko M.D., Cherepanova S.V., Shmakov A.N., Alekseeva M.V., Kukushkin R.G., Yakovlev V.A., Pakharukova V.P., Bulavchenko O.A. Structural features investigation of a highly dispersed NiO–SiO2 catalyst by X-Ray analysis of the atomic pair distribution function // Poverhnostʹ. Rentgenovskie, sinhrotronnye i nejtronnye issledovaniâ. 2024. № 6. P. 23–30.
  31. Asedegbega-Nieto E., Guerrero-Ruíz A., Rodríguez-Ramos I. Study of CO chemisorption on graphite-supported Ru–Cu and Ni–Cu bimetallic catalysts // Thermochim. Acta. 2005. V. 434. № 1–2. P. 113.
  32. da Silva F.D. A. R., dos Santos R.C.R., Nunes R.S., Valentini A. Role of tin on the electronic properties of Ni/Al2O3 catalyst and its effect over the methane dry reforming reaction // Appl. Catal. A Gen. 2021. Vol. 618. P. 118129.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).