ИССЛЕДОВАНИЕ БИМЕТАЛЛИЧЕСКИХ НИКЕЛЕВЫХ КАТАЛИЗАТОРОВ ДЛЯ ТЕХНОЛОГИИ ЗАПАСАНИЯ ВОДОРОДА С ИСПОЛЬЗОВАНИЕМ МЕТИЛЦИКЛОГЕКСАНА
- Авторы: Степаненко С.А.1, Коскин А.П.1, Яковлев В.А.1
-
Учреждения:
- ФГБУН ФИЦ Институт катализа им. Г.К. Борескова СО РАН
- Выпуск: Том 66, № 5 (2025)
- Страницы: 372–381
- Раздел: V РОССИЙСКИЙ КОНГРЕСС ПО КАТАЛИЗУ "РОСКАТАЛИЗ" (21–26.04.2025 г., САНКТ-ПЕТЕРБУРГ
- URL: https://medbiosci.ru/0453-8811/article/view/382084
- DOI: https://doi.org/10.7868/S3034541325050025
- ID: 382084
Цитировать
Аннотация
Об авторах
С. А. Степаненко
ФГБУН ФИЦ Институт катализа им. Г.К. Борескова СО РАН
Email: stepanenko@catalysis.ru
Новосибирск, Россия
А. П. Коскин
ФГБУН ФИЦ Институт катализа им. Г.К. Борескова СО РАННовосибирск, Россия
В. А. Яковлев
ФГБУН ФИЦ Институт катализа им. Г.К. Борескова СО РАННовосибирск, Россия
Список литературы
- Концепция развития водородной энергетики в Российской Федерации. Утверждена распоряжением правительством РФ от 05.08.2021 № 2162-Р, 2021. P. 1.
- Макарян И.А., Седов И.В. Максимов А.Л. Хранение водорода с использованием жидких органических носителей (обзор) // Журнал прикладной химии. 2020. Т. 93. № 12. С. 1716.
- Niermann M., Beckendorff A., Kaltschmitt M., Bonhoff K. Liquid Organic Hydrogen Carrier (LOHC) – Assessment based on chemical and economic properties // Int. J. Hydrogen Energy. 2019. V. 44. № 13. P. 6631.
- Spatolisano E., Matichecchia A., Pellegrini L.A., de Angelis A.R., Cattaneo S., Roccaro E. Toluene as effective LOHC: detailed techno-economic assessment to identify challenges and opportunities. 2023. P. 3245–3250.
- Perreault P., Van Hoecke L., Pourfallah H., Kummamuru N.B., Boruntea C.R., Preuster P. Critical challenges towards the commercial rollouts of a LOHC-based H2 economy // Curr. Opin. Green Sustain. Chem. 2023. V. 41. Art. 100836.
- Sisakova K., Podrojkova N., Orinakova R., Orinak A. Novel catalysts for dibenzyltoluene as a potential liquid organic hydrogen carrier use-A mini-review // Energy Fuels. 2021. V. 35. № 9. P. 7608.
- Wang Q., Le K., Lin Y., Yin W., Lin Y., Alekseeva M.V., Yakovlev V.A., Koskin A.P., Yang C., Qiu, T. Investigation on catalytic distillation dehydrogenation of perhydro-benzyltoluene: Reaction kinetics, modeling and process analysis // Chem. Eng. J. 2024. V. 482. Art. 148591.
- Stepanenko S.A., Shivtsov D.M., Koskin A.P., Koskin I.P., Kukushkin R.G., Yeletsky P.M., Yakovlev V.A. N-Heterocyclic molecules as potential liquid organic hydrogen carriers: reaction routes and dehydrogenation efficacy // Catalysts. 2022. V. 12. № 10. P. 1260.
- Stepanenko S.A., Koskin A.P., Kukushkin R.G., Yeletsky P.M. State-of-art of liquid hydrogen carriers: trends in the selection of organic molecules // Curr. Org. Chem. 2023. V. 27. № 19. P. 1677.
- Koskin A.P., Zhang J., Belskaya O.B., Bulavchenko O.A., Konovalova D.A., Stepanenko S.A., Ishchenko A.V., Danilova I.G., Yurpalov V.L., Larichev Y.V., Kukushkin R.G. Efficiency of high-loaded nickel catalysts modified by Mg in hydrogen storage/extraction using quinoline/decahydroquinoline pair as LOHC substrates // J. Magnes. Alloy. 2024. V. 12. № 8. P. 3245.
- Tan R., Ji Q., Ling Y., Li L. Advances in liquid organic hydrogen carriers: developing efficient dehydrogenation strategies // Chem. Commun. 2024. V. 60. № 63. P. 8186.
- Dai X., Verma R., Zhang X., Bai J., Verma S.K., Yun H., Wang J., Dixit C.K., Verma S.K. Critical analysis on catalytic methylcyclohexane dehydrogenation reaction: A review // Int. J. Hydrogen Energy. 2025. V. 141. P. 691.
- Шивцов Д.М., Афонникова С.Д., Мишаков И.В., Ведягин А.А. Палладийсодержащие катализаторы на основе функционализованных УНВ для дегидрирования метилциклогексана // Кинетика и Катализ. 2023. Т. 64. № 6. С. 857.
- Gao J., Li N., Zhang D., Zhao S., Zhao Y. The progress of research based on methylcyclohexane dehydrogenation technology: A review // Int. J. Hydrogen Energy. 2024. V. 85. P. 865.
- Alghamdi H.S., Ali A., Ajeebi A.M., Jedidi A., Sanhoob M., Aktary M., Shabi A.H., Usman M., Alghamdi W., Alzahrani S., Abdul Aziz M. Catalysts for liquid organic hydrogen carriers (LOHCs): Efficient storage and transport for renewable energy // Chem. Rec. 2024. V. 24. № 11, e202400082.
- Zhou M.J., Miao Y., Gu Y., Xie Y. Recent advances in reversible liquid organic hydrogen carrier systems: from hydrogen carriers to catalysts // Adv. Mater. 2024. V. 36. № 37. P. 1.
- Al-ShaikhAli A. H., Jedidi A., Cavallo L., & Takanabe K. Non-precious bimetallic catalysts for selective dehydrogenation of an organic chemical hydride system // Chem. Commun. 2015. V. 51. № 65. P. 12931.
- Al-ShaikhAli A. H., Jedidi A., Anjum D. H., Cavallo L., Takanabe K. Kinetics on NiZn bimetallic catalysts for hydrogen evolution via selective dehydrogenation of methylcyclohexane to toluene // ACS Catal. 2017. V. 7. № 3. P. 1592.
- Patil S.P., Pande J.V., Biniwale R.B. Non-noble Ni–Cu/ACC bimetallic catalyst for dehydrogenation of liquid organic hydrides for hydrogen storage // Int. J. Hydrogen Energy. 2013. V. 38. № 35. P. 15233.
- Xia Z., Liu H., Lu H., Zhang Z., Chen Y. Study on catalytic properties and carbon deposition of Ni–Cu/SBA15 for cyclohexane dehydrogenation // Appl. Surf. Sci. 2017. V. 422. P. 905.
- Ermakova M.A., Ermakov D.Y. High-loaded nickel-silica catalysts for hydrogenation, prepared by solgel: Route – Structure and catalytic behavior // Appl. Catal. A: Gen. 2003. V. 245. № 2. P. 277.
- Ermakova M.A., Ermakov D.Y., Cherepanova S.V., Plyasova L.M. Synthesis of ultradispersed nickel particles by reduction of high-loaded NiO–SiO2 systems prepared by heterophase sol-gel method // J. Phys. Chem. B. 2002. V. 106. № 46. P. 11922.
- Gor G. Y., Thommes M., Cychosz K. A., Neimark A. V. Quenched solid density functional theory method for characterization of mesoporous carbons by nitrogen adsorption // Carbon. 2012. V. 50. № 4. P. 1583.
- Zhu T., Song H., Li F., Chen Y. Hydrodeoxygenation of Benzofuran over Bimetallic Ni–Cu/γ-Al2O3 Catalysts // Catalysts. 2020. V. 10. № 3. P. 274.
- Obeso-Estrella R., Yocupicio-Gaxiola R.I., Flores-Sanchez L.A., Quintana-Melgoza J.M., Valdez R., Simakov A., Petranovskii V. Influence of temperature and volume ratio of Cu:Ni exchange solutions on the chemical properties of the guest metals in prepared CuNi–mordenite materials: Evidence of direct competition between copper and nickel ions // Micropor. Mesopor. Mater. 2023. V. 362. Art. 112797.
- Loricera C.V., Castaño P., Infantes-Molina A., Hita I., Gutiérrez A., Arandes J.M., Fierro J.L.G., Pawelec B. Designing supported ZnNi catalysts for the removal of oxygen from bio-liquids and aromatics from diesel // Green Chem. 2012. V. 14. № 10. P. 2759.
- Golubina E.V., Lokteva E.S., Erokhin A.V., Murzin V.Y., Chernikova V.S., Veligzhanin A.A. Formation of active centers of nickel–zinc catalysts deposited on the nanodiamond for the selective hydrogenation of phenylacetylene // Russ. J. Phys. Chem. A. 2021. V. 95. № 3. P. 492.
- Chen L.C., Lin S.D. The ethanol steam reforming over Cu–Ni/SiO2 catalysts: Effect of Cu/Ni ratio // Appl. Catal. B: Environ. 2011. V. 106. № 3–4. P. 639.
- Bykova M.V., Ermakov D.Y., Khromova S.A., Smirnov A.A., Lebedev M.Y., Yakovlev V.А. Stabilized Nibased catalysts for bio-oil hydrotreatment: Reactivity studies using guaiacol // Catal. Today. 2014. V. 220– 222. P. 21.
- Mikhnenko M.D., Cherepanova S.V., Shmakov A.N., Alekseeva M.V., Kukushkin R.G., Yakovlev V.A., Pakharukova V.P., Bulavchenko O.A. Structural features investigation of a highly dispersed NiO–SiO2 catalyst by X-Ray analysis of the atomic pair distribution function // Poverhnostʹ. Rentgenovskie, sinhrotronnye i nejtronnye issledovaniâ. 2024. № 6. P. 23–30.
- Asedegbega-Nieto E., Guerrero-Ruíz A., Rodríguez-Ramos I. Study of CO chemisorption on graphite-supported Ru–Cu and Ni–Cu bimetallic catalysts // Thermochim. Acta. 2005. V. 434. № 1–2. P. 113.
- da Silva F.D. A. R., dos Santos R.C.R., Nunes R.S., Valentini A. Role of tin on the electronic properties of Ni/Al2O3 catalyst and its effect over the methane dry reforming reaction // Appl. Catal. A Gen. 2021. Vol. 618. P. 118129.
Дополнительные файлы


