Effect of Pretreatment with Phosphoric Acid on the Catalytic Properties of Pd/C Obtained by the Pyrolytic Method in the Hydrodechlorination of Chlorobenzene

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Pd/C catalysts containing reduced palladium nanoparticles on activated carbon were obtained by pyrolysis of wood sawdust impregnated sequentially or simultaneously with phosphoric acid and palladium nitrate. Low-temperature nitrogen adsorption-desorption, scanning electron microscopy, X-ray photoelectron spectroscopy and Raman spectroscopy methods show that pyrolysis leads to the formation of microporous carbon material with high content of graphite-like carbon and high specific surface area (1600-1900 m2/g) regardless of the acid treatment conditions. According to X-ray photoelectron spectroscopy and transmission electron microscopy, the obtained Pd/C catalysts include predominantly nanosize Pd particles. Co-impregnation with phosphoric acid and palladium nitrate provides catalyst with larger average palladium particle size, higher surface palladium content and increased activity and stability in gas-phase hydrodechlorination of chlorobenzene in comparison to catalyst obtained by sequential impregnation with phosphoric acid and palladium nitrate and characterized by slightly higher fraction of reduced palladium.

About the authors

S. V Klokov

Lomonosov Moscow State University, Chemistry Department

Email: servadklokov@gmail.com
ORCID iD: 0000-0001-9913-8496
Moscow, Russia

E. S Lokteva

Lomonosov Moscow State University, Chemistry Department

ORCID iD: 0000-0003-3510-4822
Moscow, Russia

E. V Golubina

Lomonosov Moscow State University, Chemistry Department

ORCID iD: 0000-0002-1040-1428
Moscow, Russia

M. M Kasyanov

Lomonosov Moscow State University, Chemistry Department

Moscow, Russia

K. I Maslakov

Lomonosov Moscow State University, Chemistry Department

ORCID iD: 0000-0002-0672-2683
Moscow, Russia

O. Ya Isaykina

Lomonosov Moscow State University, Chemistry Department

ORCID iD: 0000-0002-4165-6562
Moscow, Russia

References

  1. Ilunga A.K., Mamba B.B., Nkambule T.T.I. // J. Water Process Eng. 2021. V. 44. ID: 102402. https://doi.org/10.1016/j.jwpe.2021.102402
  2. Fernandez-Ruiz C., Liu S., Bedia J., Rodriguez J.J., Gomez-Sainero L.M. // J. Environ. Chem. Eng. 2021. V. 9. ID: 104744. https://doi.org/10.1016/j.jece.2020.104744
  3. Liu S., Iglesias-Juez A., Hungria A.B., Martin-Martinez M., Bedia J., Rodriguez J.J., Gomez-Sainero L.M. // Chem. Eng. J. 2024. V. 492. ID: 152128. https://doi.org/10.1016/j.cej.2024.152128
  4. Diaz E., Ordonez S., Bueres R.F., Asedegbeda-Nieto E., Sastre H. // Appl. Catal. B: Environ. 2010. V. 99. P. 181. https://doi.org/10.1016/j.apcatb.2010.06.016
  5. Das A., Mondal S., Kansda K.M., Adak M.K., Dhak D. // Appl. Catal. A: Gen. 2022. V. 649. ID: 118955. https://doi.org/10.1016/j.apcata.2022.118955
  6. Ogungbenro A.E., Quang D.V., Al-Ali K.A., Vega L.F., Abu-Zahra M.R.M. // J. Environ. Chem. Eng. 2018. V. 6. № 4. P. 4245. https://doi.org/10.1016/j.jece.2018.06.030
  7. Korotta-Gamage S.M., Sathasiavan A. // Int. Biodeterior. Biodegrad. 2017. V. 124. P. 82. https://doi.org/10.1016/j.ibiod.2017.05.025
  8. MacDermid-Watts K., Pradhan R., Dutta A. // Waste Biomass Valor. 2021. V. 12. № 5. P. 2171. https://doi.org/10.1007/s12649-020-01134-x
  9. Luo Y., Li D., Chen Y., Sun X., Cao Q., Liu X. // J. Mater. Sci. 2019. V. 54. № 6. P. 5008. https://doi.org/10.1007/s10853-018-03220-x
  10. Jawad A.H., Rashid R.A., Ishak M.AM., Wilson L.D. // Desalination Water Treat. 2016. V. 57. № 52. P. 25194. https://doi.org/10.1080/19443994.2016.1144534
  11. Ajmani A., Patra C., Subbiah S., Narayanasamy S. // J. Environ. Chem. Eng. 2020. V. 8. № 4. ID: 103825. https://doi.org/10.1016/j.jece.2020.103825
  12. Saad M.J., Chia C.H., Zakaria S., Sajab M.S., Misran S., Rahman M.H.A, Chin S.X. // Sains Malays. 2019. V. 48. I. 2. P. 385 s://doi.org/10.17576/jsm-2019-4802-16
  13. Abdulhameed A.S., Hum N.N.M.F., Rangabhashiyam S., Jawad A.H., Wilson L.D., Yaseen Z.M., Al-Kahtani A.A., Alothman Z.A. // J. Environ. Chem. Eng. 2021. V. 9. № 4. ID: 105530 s://doi.org/10.1016/j.jece.2021.105530
  14. Zhu Y., Huo G. Yang W., Liu H. Zhang W., Cheng W., Yang H., Wang Z., Jin Y., Zhao H. // J. Anal. Appl. Pyrolysis. 2024. V. 177. ID: 106384. https://doi.org/10.1016/j.jaap.2024.106384
  15. Xie X., He N., Hu D., Luo Y., Zhang K., Du C., Pan H., Chen Z., Lin Q. // J. Anal. Appl. Pyrol. 2025. V. 187. ID: 106999. https://doi.org/10.1016/j.jaap.2025.106999
  16. Neme I., Gonfa G., Masi C. // Helyion. 2022. V. 8. № 12. ID: e11940 s://doi.org/10.1016/j.heliyon.2022.e11940
  17. Myglovets M., Poddubnaya O.I., Sevastyanova O., Lindstrom M.E., Gawdzik B., Sobiesiak M., Tsyba M.M., Sapsay V.I., Klymchuk D.O., Puziy A.M. // Carbon. 2014. V. 80. P. 771 s://doi.org/10.1016/j.carbon.2014.09.032
  18. Klokov S.V., Lokteva E.S., Golubina E.V., Maslakov K.I., Levanov A.V., Chernyak S.A., Likholobov V.A. // Catal. Commun. 2016. V. 77. P. 37. https://doi.org/10.1016/j.catcom.2016.01.013
  19. Локтева Е.С., Клоков С.В., Голубина Е.В., Маслаков К.И., Тренихин М.В., Ивакин Ю.Д., Лихолобов В.А. // Изв. АН. Сер. хим. 2016. № 11. С. 2618.
  20. Клоков С.В., Локтева Е.С., Голубина Е.В., Маслаков К.И., Исайкина О.Я., Тренихин М.В. // ЖФХ. 2019. Т. 93. № 10. С. 1584 ://doi.org/10.1134/S0044453719100121
  21. Карчевский Д.Ф., Исаков А.В., Соколов А.С. // Ползуновский вестник. 2008. № 3. С. 303.
  22. Chernyak S.A., Stolbov D.N., Ivanov A.S., Klokov S.V., Egorova T.B., Maslakov K.I., Eliseev O.L., Maximov V.V., Savilov S.V., Lunin V.V. // Catal. Today. 2020. V. 357. P. 193 s://doi.org/10.1016/j.cattod.2019.02.044
  23. Shaaban A., Se S.-M., Dimin M.F., Juol J.M., Husin M.H.M., Mitan N.M.M. // J. Anal. Appl. Pyrol. 2014. V. 107. P. 31 s://doi.org/10.1016/j.jaap.2014.01.021
  24. Schlumberger C., Thommes M. // Adv. Mater. Interfaces. 2021. V. 8. ID: 2002181. https://doi.org/10.1002/ admi.202002181
  25. Yuan R., Guo Y., Gurgan I., Siddique N., Li Y.-S., Jang S., Noh G.A., Kim S.H. // Carbon. 2025. V. 238. ID: 120214. https://doi.org/10.1016/j.carbon.2025.120214
  26. Тихомиров С., Кимстач Т. // Аналитика. 2011. № 1. С. 28.
  27. Pawlyta M., Rouzaud J.-N., Duber S. // Carbon. 2015. V. 84. P. 479 s://doi.org/10.1016/j.carbon.2014.12.030
  28. Puziy A.M. Poddubnaya O.I., Socha R.P., Gurgul J., Wisniewski M. // Carbon. 2008. V. 46. P. 2113. https://doi.org/10.1016/j.carbon.2008.09.010
  29. Brun M., Berthet A., Bertolini J.C. // J. Electron. Spectrosc. Relat. Phenom. 1999. V. 104. № 1–3. P. 55. https://doi.org/10.1016/S0368-2048(98)00312-0
  30. Pillo T., Zimmermann R., Steiner P., Hufner S. // J. Phys. Condens. Matter. 1997. V. 9. № 19. P. 3987. https://doi.org/10.1088/0953-8984/9/19/018
  31. Kovtunov K.V., Barskiy D.A., Salnikov O.G., Khudorozhkov A.K., Bukhtiyarov V.I., Prosvirin I.P., Koptyug I.V. // Chem. Commun. 2014. V. 50. № 7. P. 875. https://doi.org/10.1039/C3CC44939D
  32. Sleigh C., Pijpers A.P., Jaspers A., Coussens B., Meier R.J. // J. Electron Spectrosc. Relat. Phenom. 1996. V. 77. № 1. P. 41 s://doi.org/10.1016/0368-2048(95)02392-5
  33. Yuvaraj S., Fan-Yuan L., Tsong-Huei C., Chuin -Tih Y. // J. Phys. Chem. B. 2003. V. 107. № 4. P. 1044. https://doi.org/10.1021/jp026961c
  34. Puziy A.M., Poddubnaya O.I., Gawdzik B., Tascon J.M.D. // Carbon. 2020. V. 157. P. 796. https://doi.org/10.1016/j.carbon.2019.10.018
  35. Franke R., Chasse Th., Streubel P., Meisel A. // J. Electron Spectrosc. Relat. Phenom. 1991. V. 56. № 4. P. 381. https://doi.org/10.1016/0368-2048(91)85035-R
  36. El-Maadi A., Bennazha J., Reau J.M., Boukhari A., Holt E.M. // Mater. Res. Bull. 2003. V. 38. № 5. P. 865. https://doi.org/10.1016/S0025-5408(03)00021-7
  37. Lu C., Zhu Q., Zhang X., Liu Q., Nie J., Feng F., Zhang Q., Ma L., Han W., Li X. // Catalysts. 2019. V. 9. № 2. P. 177. https://doi.org/10.3390/catal9020177
  38. Xing S., He M., Lv G., Xu F., Wang F., Zhang H., Wang Y. // J. Mater. Sci. 2021. V. 56. P. 10523. https://doi.org/10.1007/s10853-021-05935-w
  39. Скрипов Н.И., Белых. Л.Б., Стеренчук Т.П., Корнаухова Т.А., Миленькая Е.А., Шмидт Ф.К. // Кинетика и катализ. 2022. Т. 63. № 2. С. 223. https://doi.org/10.31857/S0453881122020101
  40. Белых Л.Б., Стеренчук Т.П., Скрипов Н.И., Миленькая Е.А., Корнаухова Т.А., Скорникова С.А., Колесников С.С., Шмидт Ф.К. // Кинетика и катализ. 2024. Т. 65. № 1. С. 22 s://doi.org/10.31857/S0453881124010037
  41. Петрухина Н.Н., Джабаров Э.Г., Захарян Е.М. // Успехи химии. 2025. Т. 94. № 5. RCR5166. https://www.uspkhim.ru/RCR5166
  42. Cecilia J.A., Jimenez-Morales I., Infantes-Molina A., Rodriguez-Castellona E., Jimenez-Lopez A. // J. Mol. Catal. A: Chem. 2013. V. 368–369. P. 78. https://doi.org/10.1016/j.molcata.2012.11.017
  43. de Lucas-Consuerga A., Serrano-Ruiz J.C, Gutierrez-Guerra N. // Catalysts. 2018. V. 8. № 8. P. 340. https://doi.org/10.3390/catal8080340
  44. Diez-Ramirez J., Sanchez P., Rodriguez-Gomez A., Valverde J.L., Dorado F. // Ind. Eng. Chem. Res. 2016. V. 55. № 12. P. 3556 s://doi.org/10.1021/acs.iecr.6b00170
  45. Lidman Olsson E.O., Glarborg P., Leion H., Dam-Johansen K., Wu H. // Energy Fuels. 2021. V. 35. № 19. P. 15817 s://doi.org/10.1021/acs.energyfuels.1c02397
  46. Ramos A.L.D., Aranda D.A.G., Schmal M. // Stud. Surf. Sci. Catal. 2001. V. 138. P. 291. https://doi.org/10.1016/S0167-2991(01)80041-0
  47. You P., Wu L., Zhou L., Xu Y., Qin R. // Catalysts. 2024. V. 14. № 8. P. 545 s://doi.org/10.3390/catal14080545
  48. Gockeler M., Berger C.M., Purcel M., Bergstraber R., Schinkel A.-P., Muhler M. // Appl. Surf. Sci. 2021. V. 561. ID: 150044 s://doi.org/10.1016/j.apsusc.2021.150044
  49. Розанов В.В., Крылов О.В. // Успехи химии. 1997. Т. 66. № 2. C. 117.
  50. Konda S.K., Chen A. // Mater. Today. 2016. V. 19. № 2. P. 100. https://doi.org/10.1016/j.mattod.2015.08.002
  51. Navarro-Ruiz X., Audevard J., Vidal M., Campos C.H., Rosal I.D., Serp P., Gerber I.C. // ACS Catal. 2024. V. 14. № 9. P. 7111 s://doi.org/10.1021/acscatal.4c00293
  52. Baeza J.A., Calvo L., Gillaranz M.A., Mohedano A.F., Casas J.A., Rodriguez J.J. // J. Catal. 2012. V. 293. P. 85. https://doi.org/10.1016/j.jcat.2012.06.009
  53. Babu N.S., Lingaiah N., Pasha N., Kumar J.V., Prasas P.S.S. // Catal. Today. 2009. V. 141. № 1–2. P. 120. https://doi.org/10.1016/j.cattod.2008.03.018
  54. Gomes-Sainero L.M., Seoane X.L., Fierro J.L.G., Arcoya A. // J. Catal. 2002. V. 209. № 2. P. 279. https://doi.org/10.1006/jcat.2002.3655
  55. Aramendia M.A., Borau V. Garcia I.M., Jimenez C., Lafont F., Marinas A., Marinas J.M., Urbano F.J. // J. Catal. 1999. V. 187. № 2. P. 392. https://doi.org/10.1006/jcat.1999.2632

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Клоков доп
Download (431KB)


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).