FAST AND HIGH-ACCURACY HOUGH TRANSFORM WITH COMPUTATIONAL COMPLEXITY Θ(wh log3 w) FOR PROCESSING RECTANGULAR-SHAPED IMAGES OF ARBITRARY SIZES
- Authors: Kazimirov D.D1,2,3, Nikolaev D.P3,4
-
Affiliations:
- Kharkevich Institute for Information Transmission Problems of the Russian Academy of Sciences
- Lomonosov Moscow State University
- Smart Engines Service LLC
- Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences
- Issue: Vol 61, No 4 (2025)
- Pages: 41-58
- Section: Image Processing
- URL: https://medbiosci.ru/0555-2923/article/view/363551
- DOI: https://doi.org/10.7868/S3034583925040032
- ID: 363551
Cite item
Abstract
About the authors
D. D Kazimirov
Kharkevich Institute for Information Transmission Problems of the Russian Academy of Sciences; Lomonosov Moscow State University; Smart Engines Service LLC
Email: d.kazimirov@smartengines.com
Moscow, Russia; Moscow, Russia; Moscow, Russia
D. P Nikolaev
Smart Engines Service LLC; Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences
Email: d.p.nikolaev@smartengines.com
Moscow, Russia; Moscow, Russia
References
- Hough P.V.C. Machine Analysis of Bubble Chamber Pictures // Proc. 2nd Int. Conf. on High-Energy Accelerators and Instrumentation (HEACC 1959). CERN, Geneva, Switzerland. Sept. 14–19, 1959. P. 554–558.
- Rahmdel P.S., Comley R., Shi D., McElduff S. A Review of Hough Transform and Line Segment Detection Approaches // Proc. 10th Int. Conf. on Computer Vision Theory and Applications (VISAPP 2015). Berlin, Germany. Mar. 11–14, 2015. V. 2. P. 411–418. https://doi.org/10.5220/0005268904110418
- Hassanein A.S., Mohammad S., Sameer M., Ragab M.E. A Survey on Hough Transform, Theory, Techniques and Applications, https://arxiv.org/abs/1502.02160 [cs.CV], 2015.
- Mukhopadhyay P., Chaudhuri B.B. A Survey of Hough Transform // Pattern Recognit. 2015. V. 48. № 3. P. 993–1010. https://doi.org/10.1016/j.patcog.2014.08.027
- Алиев М.А., Николаев Д.П., Сараев А.А. Построение быстрых вычислительных схем настройки алгоритма бинаризации Ниблэка // Тр. ИСА РАН. 2014. Т. 64. №3. С. 25–34.
- Saha S., Basu S., Nasipuri M., Basu D. A Hough Transform Based Technique for Text Segmentation // J. Comput. 2010. V. 2. № 2. P. 134–141.
- Ershova D., Gayer A., Sheshkus A., Arlazarov V.V. An Ultra-lightweight Approach for Machine Readable Zone Detection via Semantic Segmentation and Fast Hough Transform // Document Analysis and Recognition – ICDAR 2024 (Proc. 18th Int. Conf. Athens, Greece. Aug 30 – Sept. 4, 2024. Part IV). Lect. Notes Comput. Sci. V. 14807. Cham: Springer, 2024. P. 359–374. https://doi.org/10.1007/978-3-031-70546-5_21
- Безматерных П.В. Нормализация изображения текста с помощью быстрого преобразования Хафа // ИТиВС. 2024. № 4. С. 3–16. https://doi.org/10.14357/20718632240401
- Li H., Ma Y., Bao H., Zhang Y. Probabilistic Hough Transform for Rectifying Industrial Nameplate Images: A Novel Strategy for Improved Text Detection and Precision in Difficult Environments // Appl. Sci. 2023. V. 13. № 7. P. 4533 (16 pp.). https://doi.org/10.3390/app13074533
- Polevoy D., Gilmanov M., Kazimirov D., Chukalina M., Ingacheva A., Kulagin P., Nikolaev D. Tomographic Reconstruction: General Approach to Fast Back-Projection Algorithms // Mathematics. 2023. V. 11. №23. P. 4759 (37 pp.). https://doi.org/10.3390/math11234759
- Polevoy D.V., Kazimirov D.D., Chukalina M.V., Nikolaev D.P. Complexity-Preserving Transposition of Summing Algorithms: A Data Flow Graph Approach // Probl. Inf. Transm. 2024. V. 60. № 4. P. 344–362. https://doi.org/10.1134/S0032946024040057
- Polevoy D., Kazimirov D., Gilmanov M., Nikolaev D. No Reproducibility, No Progress: Rethinking CT Benchmarking // J. Imaging. 2025. V. 11. № 10. P. 344 (36 pp.). https://doi.org/10.3390/jimaging11100344
- Sheshkus A.V., Chirvonaya A.N., Matveev D.M., Nikolaev D.P., Arlazarov V.L. Vanishing Point Detection with Direct and Transposed Fast Hough Transform Inside the Neural Network // Компьютерная оптика. 2020. Т. 44. № 5. С. 737–745. https://doi.org/10.18287/2412-6179-CO-676
- Zhao K., Han Q., Zhang C.-B., Xu J., Cheng M.-M. Deep Hough Transform for Semantic Line Detection // IEEE Trans. Pattern Anal. Mach. Intell. 2021. V. 44. № 9. P. 4793–4806. https://doi.org/10.1109/TPAMI.2021.3077129
- Brady M.L., Yong W. Fast Parallel Discrete Approximation Algorithms for the Radon Transform // Proc. 4th Annu. ACM Symp. on Parallel Algorithms and Architectures (SPAA’92). San Diego, California, USA. June 29 – July 1, 1992. P. 91–99. https://doi.org/10.1145/140901.140911
- Kazimirov D.D., Rybakova E.O., Gulevskiy V.V., Terekhin A.P., Limonova E.E., Nikolaev D.P. Generalizing the Brady–Yong Algorithm: Efficient Fast Hough Transform for Arbitrary Image Sizes // IEEE Access. 2025. V. 13. P. 20101–20132. https://doi.org/10.1109/ACCESS.2025.3534405
- Khanipov T. Computational Complexity Lower Bounds of Certain Discrete Radon Transform Approximations, https://arxiv.org/abs/1801.01054 [cs.CC], 2018.
- Карпенко С.М., Ершов Е.И. Исследование свойств диадического паттерна быстрого преобразования Хафа // Пробл. передачи информ. 2021. Т. 57. № 3. С. 102–111. https://doi.org/10.31857/S0555292321030074
- Smirnov G., Karpenko S. Analyzing Deviations of Dyadic Lines in Fast Hough Transform, https://arxiv.org/abs/2311.10064 [cs.CV], 2023.
- Nikolaev D., Ershov E., Kroshnin A., Limonova E., Mukovozov A., Faradzhev I. On a Fast Hough/Radon Transform as a Compact Summation Scheme over Digital Straight Line Segments // Mathematics. 2023. V. 15. № 15. P. 3336 (22 pp.). https://doi.org/10.3390/math11153336
- Khanipov T.M. Ensemble Computation Approach to the Hough Transform, https://arxiv.org/abs/1802.06619 [cs.CC], 2018.
- G´omez-C´ardenes ´O., Marichal-Hern´andez J.G., Phillip L¨uke J., Rodr´ıguez-Ramos, J.M. Central and Periodic Multi-Scale Discrete Radon Transforms // Appl. Sci. 2021. V. 11. № 22. P. 10606 (27 pp.). https://doi.org/10.3390/app112210606
- Rosenfeld A. Digital Straight Line Segments // IEEE Trans. Comput. 1974. V. 23. № 12. P. 1264–1269. https://doi.org/10.1109/T-C.1974.223845
- Brady M.L. A Fast Discrete Approximation Algorithm for the Radon Transform // SIAM J. Comput. 1998. V. 27. № 1. P. 107–119. https://doi.org/10.1137/S0097539793256673
- Kazimirov D., Nikolaev D., Rybakova E., Terekhin A. Generalization of Brady–Yong Algorithm for Fast Hough Transform to Arbitrary Image Size // Proc. 5th Symp. on Pattern Recognition and Applications (SPRA 2024). Istanbul, Turkey. Nov. 11–13, 2024. Proc. SPIE. V. 13540. P. 67–72.
- Kazimirov D.D., Nikolaev D.P. Fast Hough Transform with Linear-Log-Cubed Computational Complexity for High-Accuracy Processing of Arbitrary-Shaped Images // Probl. Inf. Transm. 2025. V. 61. № 3 (to appear).
- Kazimirov D.D., Nikolaev D.P., Rybakova E.O., Terekhin A.P. Efficient In-Place Hough Transform Algorithm for Arbitrary Image Sizes // Probl. Inf. Transm. 2024. V. 60. № 4. P. 363–391. https://doi.org/10.1134/S0032946024040069
- Shepp L.A., Logan B.F. The Fourier Reconstruction of a Head Section // IEEE Trans. Nucl. Sci. 1974. V. 21. № 3. P. 21–43. https://doi.org/10.1109/TNS.1974.6499235
- IITP Vision Lab., adrt: Approximate Discrete Radon Transform, GitHub repository https://github.com/iitpvisionlab/adrt; Python Package Index (PyPI) https://pypi.org/project/adrtlib. Accessed 2025-05-09.
Supplementary files


