ОБЗОР ТЕХНОЛОГИИ Wi-Fi 8: НОВЫЕ ВОЗМОЖНОСТИ И ОТКРЫТЫЕ ЗАДАЧИ
- Авторы: Карамышев А.Ю1,2, Левицкий И.А1,2, Банков Д.В1,2, Хоров Е.М1,2
-
Учреждения:
- Институт проблем передачи информации им. А.А. Харкевича Российской академии наук
- Московский независимый исследовательский институт искусственного интеллекта (МНИИ НИ)
- Выпуск: Том 61, № 3 (2025)
- Страницы: 3-48
- Раздел: Теория сетей связи
- URL: https://medbiosci.ru/0555-2923/article/view/363544
- DOI: https://doi.org/10.7868/S3034583925030016
- ID: 363544
Цитировать
Аннотация
Об авторах
А. Ю Карамышев
Институт проблем передачи информации им. А.А. Харкевича Российской академии наук; Московский независимый исследовательский институт искусственного интеллекта (МНИИ НИ)
Email: karamyshev@wnlab.ru
Москва, Россия; Москва, Россия
И. А Левицкий
Институт проблем передачи информации им. А.А. Харкевича Российской академии наук; Московский независимый исследовательский институт искусственного интеллекта (МНИИ НИ)
Email: levitsky@wnlab.ru
Москва, Россия; Москва, Россия
Д. В Банков
Институт проблем передачи информации им. А.А. Харкевича Российской академии наук; Московский независимый исследовательский институт искусственного интеллекта (МНИИ НИ)
Email: bankov@wnlab.ru
Москва, Россия; Москва, Россия
Е. М Хоров
Институт проблем передачи информации им. А.А. Харкевича Российской академии наук; Московский независимый исследовательский институт искусственного интеллекта (МНИИ НИ)
Email: khorov@wnlab.ru
Москва, Россия; Москва, Россия
Список литературы
- Galati-Giordano L., Geraci G., Carrascosa M., Bellalta B. What Will Wi-Fi 8 Be? A Primer on IEEE 802.11bn Ultra High Reliability // IEEE Commun. Mag. 2024. V. 62. № 8. P. 126–132. https://doi.org/10.1109/MCOM.001.2300728
- Reshef E., Cordeiro C. Future Directions for Wi-Fi 8 and Beyond // IEEE Commun. Mag. 2022. V. 60. № 10. P. 50–55. https://doi.org/10.1109/MCOM.003.2200037
- IEEE 802.11 Wireless LAN (WLAN) Working Group Documents (online). IEEE Standards Association, https://mentor.ieee.org/802.11/documents.
- Future Technology Trends of Terrestrial International Mobile Telecommunications Systems towards 2030 and Beyond. Int. Telecommunication Union (ITU). Rep. M.2516, 2022. https://www.itu.int/pub/R-REP-M.2516-2022
- Wang C.-X., You X., Gao X., Zhu X., Li Z., Zhang C. On the Road to 6G: Visions, Requirements, Key Technologies, and Testbeds // IEEE Commun. Surveys Tuts. 2023. V. 25. № 2. P. 905–974. http://doi.org/10.1109/COMST.2023.3249835
- Chen W., Lin X., Lee J., Toskala A., Sun S., Chiasserini C.F., Liu L. 5G-Advanced toward 6G: Past, Present, and Future // IEEE J. Sel. Areas Commun. 2023. V. 41. № 6. P. 1592–1619. https://doi.org/10.1109/JSAC.2023.3274037
- Lin X. The Bridge Toward 6G: 5G-Advanced Evolution in 3GPP Release 19 // IEEE Commun. Stand. Mag. 2025. V. 9. № 1. P. 28–35. http://doi.org/10.1109/MCOMSTD.0001.2300063
- Liu X., Chen T., Dong Y., Mao Z., Gan M., Yang X., Lu J. Wi-Fi 8: Embracing the Millimeter-Wave Era // IEEE Commun. Mag. 2025. V. 63. № 3. P. 69–75. https://doi.org/10.1109/MCOM.002.2400059
- Carrascosa-Zamacois M., Geraci G., Galati-Giordano L., Jonhsson A., Bellalta B. Understanding Multi-link Operation in Wi-Fi 7: Performance, Anomalies, and Solutions // Proc. IEEE 34th Annu. Int. Symp. on Personal, Indoor and Mobile Radio Communications (PIMRC 2023). Toronto, ON, Canada. Sept. 5–8, 2023. P. 1–6. http://doi.org/10.1109/PIMRC56721.2023.10293865
- Nunez D., Smith M., Bellalta B. Multi-AP Coordinated Spatial Reuse for Wi-Fi 8: Group Creation and Scheduling // Proc. 21st Mediterranean Communication and Computer Networking Conf. (MedComNet 2023). Island of Ponza, Italy. June 13–15, 2023. P. 203–208. https://doi.org/10.1109/MedComNet58619.2023.10168857
- Chemrov K., Bankov D., Lyakhov A., Khorov E., A Scheduler for Real-Time Service in Wi-Fi 8 Multi-AP Networks with Parameterized Spatial Reuse // IEEE Commun. Lett. 2024. V. 28. № 7. P. 1654–1657. https://doi.org/10.1109/LCOMM.2024.3397489
- Nunez D., Wilhelmi F., Galati-Giordano L., Geraci G., Bellalta B. Spatial Reuse in IEEE 802.11bn Coordinated Multi-AP WLANs: A Throughput Analysis // Proc. 2024 IEEE Conference on Standards for Communications and Networking (CSCN 2024). Belgrade, Serbia. Nov. 25–27, 2024. P. 265–270. http://doi.org/10.1109/CSCN63874.2024.10849731
- Wojnar M., Ciezobka W., Kosek-Szott K., Rusek K., Szott S., Nunez D., Bellalta B. IEEE 802.11bn Multi-AP Coordinated Spatial Reuse with Hierarchical Multi-Armed Bandits // IEEE Commun. Lett. 2025. V. 29. № 3. P. 428–432. https://doi.org/10.1109/LCOMM.2024.3521079
- Val I., L´opez-P´erez D., Kijanka A., Schelstraete S., Mu˜noz L., Arlandis D., Mart´ınez M. Wi-Fi 8 Unveiled: Key Features, Multi-AP Coordination, and the Role of C-TDMA, TechRxiv, 2025, https://doi.org/10.36227/techrxiv.174114571.17876683/v1.
- Nunez D., Imputato P., Avallone S., Smith M., Bellalta B. Enabling Reliable Latency in Wi-Fi 8 Through Multi-AP Joint Scheduling // IEEE Open J. Commun. Soc. 2025. V. 6. P. 2090–2101. https://doi.org/10.1109/OJCOMS.2025.3549586
- Wilhelmi F., Galati-Giordano L., Fontanesi G. “It’s Your Turn”: A Novel Channel Contention Mechanism for Improving Wi-Fi’s Reliability, https://arxiv.org/abs/2410.07874 [cs.NI], 2024.
- Wei D., Cao L., Zhang L., Gao X., Yin H. Optimized Non-Primary Channel Access Design in IEEE 802.11bn, https://arXiv.org/abs/2405.00227 [cs.NI], 2024.
- Cena G., Scanzio S., Cavalcanti D., Frascolla V. Seamless Redundancy for High Reliability Wi-Fi // Proc. IEEE 19th Int. Conf. on Factory Communication Systems (WFCS 2023). Pavia, Italy. Apr. 26–28, 2023. P. 1–4. http://doi.org/10.1109/WFCS57264.2023.10144228
- Kim J., Park H. Multi-Link/Multi-AP Coordination Based Joint Transmission for Seamless Roaming in IEEE 802.11 bn (Wi-Fi 8) // Advances on Broad-Band Wireless Computing, Communication and Applications: The 19th Int. Conf. (BWCCA-2024). Lect. Notes Data Eng. Commun. Technol. V. 231. Cham: Springer, 2025. P. 50–59. https://doi.org/10.1007/978-3-031-76452-3_5
- Sanchez-Vital R., Belogaev A., Gomez C., Famaey J., Garcia-Villegas E. A Primer on AP Power Save in Wi-Fi 8: Overview, Analysis, and Open Challenges // IEEE Wirel. Commun. 2025. P. 1–9. https://doi.org/10.1109/MCOM.004.2400486
- Karamyshev A., Levitsky I., Bankov D., Khorov E. A Tutorial on Wi-Fi 8: The Journey to Ultra High Reliability // Probl. Inf. Transm. 2025. V. 61. P. 164–210. http://doi.org/https://doi.org/10.1134/S003294602502005X
- Kosek-Szott K., Natkaniec M., Szott S., Krasilov A., Lyakhov A., Safonov A., Tinnirello I. What’s New for QoS in IEEE 802.11? // IEEE Netw. 2013. V. 27. № 6. P. 95–104. https://doi.org/10.1109/MNET.2013.6678933
- Ni Q. Performance Analysis and Enhancements for IEEE 802.11e Wireless Networks // IEEE Netw. 2005. V. 19. № 4. P. 21–27. http://doi.org/10.1109/MNET.2005.1470679
- Gast M.S. 802.11n: A Survival Guide: Wi-Fi above 100 Mbps. Sebastopol, CA: O’Reilly, 2012.
- Gast M.S. 802.11ac: A Survival Guide: Wi-Fi at Gigabit and Beyond. Sebastopol, CA: O’Reilly, 2013.
- Khorov E., Lyakhov A., Krotov A., Guschin A. A Survey on IEEE 802.11ah: An Enabling Networking Technology for Smart Cities // Comput. Commun. 2015. V. 58. P. 53–69. https://doi.org/10.1016/j.comcom.2014.08.008
- Adame T., Bel A., Bellalta B., Barcelo J., Oliver M. IEEE 802.11ah: The WiFi Approach for M2M Communications // IEEE Wireless Commun. 2014. V. 21. №6. P. 144–152. https://doi.org/10.1109/MWC.2014.7000982
- Tian L., Santi S., Seferagi´c A., Lan J., Famaey J. Wi-Fi HaLow for the Internet of Things: An Up-to-Date Survey on IEEE 802.11ah Research // J. Netw. Comput. Appl. 2021. V. 182. P. 103036. https://doi.org/10.1016/j.jnca.2021.103036
- Venkateswaran S.K., Tai C.-L., Ahmed A., Sivakumar R. Target Wake Time in IEEE 802.11 WLANs: Survey, Challenges, and Opportunities // Comput. Commun. 2025. V. 236. P. 108127. https://doi.org/10.1016/j.comcom.2025.108127
- Khorov E., Kiryanov A., Lyakhov A., Bianchi G. A Tutorial on IEEE 802.11ax High Efficiency WLANs // IEEE Commun. Surv. Tutor. 2018. V. 21. № 1. P. 197–216. https://doi.org/10.1109/COMST.2018.2871099
- Bellalta B. IEEE 802.11ax: High-Efficiency WLANs // IEEE Wirel. Commun. 2016. V. 23. № 1. P. 38–46. https://doi.org/10.1109/MWC.2016.7422404
- Khorov E., Levitsky I., Akyildiz I.F. Current Status and Directions of IEEE 802.11be, the Future Wi-Fi 7 // IEEE Access. 2020. V. 8. P. 88664–88688. https://doi.org/10.1109/ACCESS.2020.2993448
- Henry J., Hart B., Gupta B., Smith M. i-Fi 7 In Depth: Your Guide to Mastering Wi-Fi 7, the 802.11be Protocol, and Their Deployment. Pittsburgh: Addison-Wesley, 2024.
- IEEE Draft Standard for Information Technology – Telecommunications and Information Exchange between Systems Local and Metropolitan Area Networks – Specific Requirements. Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment: Enhancements for Extremely High Throughput (EHT). Aug. 2024.
- Naik G., Ogbe D., Park J.-M. Can Wi-Fi 7 Support Real-Time Applications? On the Impact of Multi Link Aggregation on Latency // ICC 2021: Proc. IEEE Int. Conf. on Communications. Montreal, QC, Canada. Aug. 6, 2021. P. 1–6. https://doi.org/10.1109/ICC42927.2021.9500256
- Bellalta B., Carrascosa M., Galati-Giordano L., Geraci G. Delay Analysis of IEEE 802.11be Multi-Link Operation under Finite Load // IEEE Wirel. Commun. Lett. 2023. V. 12. № 4. P. 595–599. https://doi.org/10.1109/LWC.2023.3235001
- Alsakati M., Pettersson C., Max S., Moothedath V.N., Gross J. Performance of 802.11be Wi-Fi 7 with Multi-Link Operation on AR Applications // Proc. 2023 IEEE Wireless Communications and Networking Conference (WCNC 2023). Glasgow, UK. Mar. 26–29, 2023. P. 1–6. https://doi.org/10.1109/WCNC55385.2023.10118866
- Iturria-Rivera P.E., Chenier M., Herscovici B., Kantarci B., Erol-Kantarci M. RL Meets Multi-Link Operation in IEEE 802.11be: Multi-Headed Recurrent Soft-Actor Critic-based Traffic Allocation // ICC 2023: Proc. IEEE Int. Conf. on Communications. Rome, Italy. May 28 – June 1, 2023. P. 4001–4006. https://doi.org/10.1109/ICC45041.2023.10279008
- Bankov D.V., Lyakhov A.I., Stepanova E.A., Khorov E.M. Performance Evaluation of Wi-Fi 7 Networks with Restricted Target Wake Time // Probl. Inf. Transm. 2024. V. 60. № 3. P. 233–254. https://doi.org/10.1134/S0032946024030062
- 20 Myths of Wi-Fi Interference: Dispel Myths to Gain High Performing and Reliable Wireless. Cisco White Paper, 2018. Available at https://www.wcvt.com/wp-content/uploads/2018/05/myths-of-wifi-interference.pdf.
- Barannikov A., Levitsky I., Khorov E. False Protection of Real-Time Traffic with Quieting in Heterogeneous Wi-Fi 7 Networks: An Experimental Study // Sensors. 2023. V. 23. № 21. P. 8927 (11 pp.). https://doi.org/10.3390/s23218927
- Cavalcanti D., Cordeiro C., Smith M., Regev A.WiFi TSN: Enabling Deterministic Wireless Connectivity over 802.11 // IEEE Commun. Stand. Mag. 2022. V. 6. № 4. P. 22–29. https://doi.org/10.1109/MCOMSTD.0002.2200039
- Karamyshev A., Liubogoshchev M., Lyakhov A., Khorov E. Enabling Industrial Internet of Things with Wi-Fi 6: An Automated Factory Case Study // IEEE Trans. Industr. Inform. 2024. V. 20. № 11. P. 13090–13100. https://doi.org/10.1109/TII.2024.3431086
- IEEE 802.11bn/D0.3: IEEE Draft Standard for Information Technology – Telecommunications and Information Exchange between Systems. Local and Metropolitan Area Networks – Specific Requirements. Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment: Enhancements for Ultra High Reliability (UHR). June 2025.
- Ghasempour Y., da Silva C.R.C.M., Cordeiro C., Knightly E.W. IEEE 802.11ay: Next-Generation 60 GHz Communication for 100 Gb/s Wi-Fi // IEEE Commun. Mag. 2017. V. 55. № 12. P. 186–192. https://doi.org/10.1109/MCOM.2017.1700393
- IEEE Standard for Information Technology – Telecommunications and Information Exchange between Systems Local and Metropolitan Area Networks – Specific Requirements. Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 6: Light Communications. Nov. 2023.
- Khorov E., Levitsky I. Current Status and Challenges of Li-Fi: IEEE 802.11bb // IEEE Commun. Stand. Mag. 2022. V. 6. № 2. P. 35–41. https://doi.org/10.1109/MCOMSTD.0001.2100104
- Barannikov A., Levitsky I., Loginov V., Khorov E. CSI Compression Method with Dual Differential Feedback for Next-Generation Wi-Fi Networks // IEEE Wirel. Commun. Lett. 2025. V. 14. № 2. P. 475–478. https://doi.org/10.1109/LWC.2024.3510215
- Venkatachalam I., Palaniappan S., Ameerjohn S. Compressive Sector Selection and Channel Estimation for Optimizing Throughput and Delay in IEEE 802.11ad WLAN // Int. J. Inf. Technol. 2025. V. 17. № 2. P. 987–998. https://doi.org/10.1007/s41870-024-02235-9
- Crespo Marques E., Maciel N., Naviner L., Cai H., Yang J. A Review of Sparse Recovery Algorithms // IEEE Access. 2019. V. 7. P. 1300–1322. https://doi.org/10.1109/ACCESS.2018.2886471
- Porat R., Ojard E., Jindal N., Fischer M., Erceg V. Improved MU-MIMO Performance for Future 802.11 Systems Using Differential Feedback // Proc. 2013 Information Theory and Applications Workshop (ITA 2013). San Diego, CA, USA. Feb. 10–15, 2013. P. 1–5. https://doi.org/10.1109/ITA.2013.6502944
- Jeon E., Lee W.B., Ahn M., Lee J.W., Kim S., Kim I. Machine Learning-Aided Dual CSI Feedback in Next Generation WLANs // Proc. IEEE 97th Vehicular Technology Conf. (VTC 2023-Spring). Florence, Italy. June 20–23, 2023. P. 1–6. https://doi.org/10.1109/VTC2023-Spring57618.2023.10200269
- Jiang C., Guo J., Wen C.-K., Jin S., Hou X. Deep Learning-Based Implicit CSI Feedback for Time-Varying Massive MIMO Channels // ICC 2023: Proc. IEEE Int. Conf. on Communications. Rome, Italy. May 28 – June 1, 2023. P. 4955–4960. https://doi.org/10.1109/ICC45041.2023.10278654
- Chen M., Guo J., Wen C.-K., Jin S., Li G.Y., Yang A. Deep Learning-Based Implicit CSI Feedback in Massive MIMO // IEEE Trans. Commun. 2022. V. 70. № 2. P. 935–950. https://doi.org/10.1109/TCOMM.2021.3138097
- Shen C., Fitz M.P. MIMO-OFDM Beamforming for Improved Channel Estimation // IEEE J. Sel. Areas Commun. 2008. V. 26. №6. P. 948–959. http://doi.org/10.1109/JSAC.2008.080811
- Jeon E., Ahn M., Kim S., Lee W.B., Kim J. Joint Beamformer and Beamformee Design for Channel Smoothing in WLAN Systems // Proc. 2020 IEEE 92nd Vehicular Technology Conf. (VTC2020-Fall). Victoria, BC, Canada. Nov. 8 –Dec. 16, 2020. P. 1–6. https://doi.org/10.1109/VTC2020-Fall49728.2020.9348441
- Hoefel R.P.F. IEEE 802.11be: Throughput and Reliability Enhancements for Next Generation Wi-Fi Networks // Proc. 2020 IEEE 31st Annu. Int. Symp. on Personal, Indoor and Mobile Radio Communications (PIMRC 2020). London, UK. Aug. 31 – Sept. 3, 2020. P. 1–7. https://doi.org/10.1109/PIMRC48278.2020.9217206
- Riterman A.V., Bankov D.V., Lyakhov A.I., Khorov E.M. Modeling of Preemptive Channel Access in Wi-Fi Networks // Probl. Inf. Transm. 2024. V. 60. № 4. P. 327–343. https://doi.org/10.1134/S0032946024040045
- Briscoe B., De Schepper K., Bagnulo M., White G. Low Latency, Low Loss, and Scalable Throughput (L4S) Internet Service: Architecture. IETF RFC 9330, 2023. https://datatracker.ietf.org/doc/rfc9330/
- Stepanova E., Bankov D., Khorov E., Lyakhov A. On the Joint Usage of Target Wake Time and 802.11ba Wake-Up Radio // IEEE Access. 2020. V. 8. P. 221061–221076. http://doi.org/10.1109/ACCESS.2020.3043535
- Gu´erin E., Begin T., Gu´erin Lassous I. An Overview of MAC Energy-Saving Mechanisms in Wi-Fi // Comput. Commun. 2023. V. 203. P. 129–145. https://doi.org/10.1016/j.comcom.2023.03.003
- Yoon Y., Jang I., Choi J., Baek S., Kim G., Cha D., Park E., Lim D., Chun J., Jung I., Cho H.-G., Kim S. Seamless Roaming Procedure. IEEE 802.11-23/1908r2. Nov. 15, 2023. https://mentor.ieee.org/802.11/dcn/23/11-23-1908-00-00bn-seamlessroamingprocedure.pptx
- Ahn W. Novel Multi-AP Coordinated Transmission Scheme for 7th Generation WLAN 802.11be // Entropy. 2020. V. 22. № 12. P. 1426 (19 pp.). https://doi.org/10.3390/e22121426
- Lacalle G., Val I., Seijo ´O., Mendicute M., Cavalcanti D., Perez-Ramirez J. Multi-AP Coordination PHY/MAC Management for Industrial Wi-Fi // Proc. 2022 IEEE 27th Int. Conf. on Emerging Technologies and Factory Automation (ETFA 2022). Stuttgart, Germany. Sept. 6–9, 2022. P. 1–8. https://doi.org/10.1109/ETFA52439.2022.9921700
- Imputato P., Avallone S. Meeting Latency Constraints in Wi-Fi Through Coordinated OFDMA // Proc. 22nd Mediterranean Communication and Computer Networking Conf. (MedComNet 2024). Nice, France. June 11–13, 2024. P. 1–4. https://doi.org/10.1109/MedComNet62012.2024.10578231
- Garcia-Rodriguez A., Lopez-Perez D., Galati-Giordano L., Geraci G. IEEE 802.11be: Wi-Fi 7 Strikes Back // IEEE Commun. Mag. 2021. V. 59. № 4. P. 102–108. http://doi.org/10.1109/MCOM.001.2000711
- Sundaravaradhan S.P., Porat R., Toussi K.N. Increasing Spatial Multiplexing Gain in Future Multi-AP WiFi Systems via Joint Transmission // IEEE Commun. Stand. Mag. 2022. V. 6. № 2. P. 20–26. https://doi.org/10.1109/MCOMSTD.0001.2100085
- Levistky I.A., Tretiakov A.A., Khorov E.M. Study of Bandwidth Selection Algorithm with Allowed Preamble Puncturing in IEEE 802.11ax and IEEE 802.11be Networks //J. Commun. Technol. Electron. 2022. V. 67. № 6. P. 755–763. https://doi.org/10.1134/S1064226922060134
- Titus A., Bansal R., Sreejith T.V., Kherani A.A., Akhtar N. Decision Problems for Joint Transmission in Multi-AP Coordination Framework of IEEE 802.11be // Proc. 2021 Int. Conf. on COMmunication Systems & NETworkS (COMSNETS 2021). Bangalore, India. Jan. 5–9, 2021. P. 326–333. https://doi.org/10.1109/COMSNETS51098.2021.9352818
Дополнительные файлы


