Том 32, № 6 (2024)
От редактора
Научное наследие Л. П. Шильникова: к 90-летнему юбилею
Аннотация
В этом году мы отмечаем 90-летний юбилей Леонида Павловича Шильникова (1934–2011), выдающегося российского математика и одного из основоположников математической теории динамического хаоса и теории глобальных бифуркаций многомерных систем.
Известия высших учебных заведений. Прикладная нелинейная динамика. 2024;32(6):713-721
713-721
Бифуркации в динамических системах. Детерминированный хаос. Квантовый хаос
Смешанная динамика: элементы теории и примеры
Аннотация
Основной целью работы является представление недавних результатов, полученных в математической теории динамического хаоса и связанных с открытием его новой третьей формы, так называемой смешанной динамики. Этот тип хаоса сильно отличается от двух его классических форм — консервативного и диссипативного хаоса, и главное его отличие состоит в том, что аттракторы и репеллеры могут пересекаться, не совпадая при этом. Основные результаты работы связаны с построением теоретических схем, направленных на математическое обоснование этого явления с помощью самых общих методов топологической динамики. В работе также приводится ряд примеров систем из приложений, в которых наблюдается смешанная динамика. Показывается, что такая динамика может быть разных типов: от близкой к консервативной до сильно диссипативной, а также что она может возникать в результате различных бифуркационных механизмов.
Известия высших учебных заведений. Прикладная нелинейная динамика. 2024;32(6):722-765
722-765
О неконсервативных возмущениях трёхмерных интегрируемых систем
Аннотация
В настоящее время достаточно полно изучены неконсервативные возмущения двумерных нелинейных гамильтоновых систем. Цель исследования — обобщение этой теории на трёхмерный случай, когда невозмущенная система является нелинейной, интегрируемой и имеет область, заполненную замкнутыми фазовыми траекториями. В данной работе рассматриваются автономные возмущения и основное внимание уделяется задаче о предельных циклах. Методы. Исследование основано на построении специальных координат, в которых переменные разделены на две медленные и одну быструю, и в первом приближении по малому параметру уравнения для медленных переменных отделяются. Результаты. Показано, что гиперболические состояния равновесия укороченной системы определяют замкнутые фазовые траектории, в окрестности которых под действием возмущения появляются циклы. Заключение. Таким образом, задача сводится к исследованию «порождающей» системы двух алгебраических или трансцендентных уравнений аналогично порождающему уравнению Пуанкаре–Понтрягина для двумерных систем. В качестве примеров рассматриваются трёхмерная система типа ван дер Поля и система Лоренца в случае больших чисел Рэлея.
Известия высших учебных заведений. Прикладная нелинейная динамика. 2024;32(6):766-780
766-780
Квазинормальные формы для систем двух уравнений с большим запаздыванием
Аннотация
Рассматривается система двух уравнений с запаздыванием. Основной целью исследования является изучение локальной динамики этой системы в предположении, что параметр запаздывания является достаточно большим. Выделены критические случаи в задаче об устойчивости состояния равновесия и показано, что они имеют бесконечную размерность. Методы. Исследования основаны на применении специальных методов бесконечномерной нормализации. Классические методы, основанные на применении теории инвариантных интегральных многообразий и нормальных форм, оказываются непосредственно неприменимы. Результаты. В качестве основных результатов построены специальные нелинейные краевые задачи, которые играют роль нормальных форм. Их нелокальная динамика определяет поведение всех решений исходной системы в окрестности состояния равновесия.
Известия высших учебных заведений. Прикладная нелинейная динамика. 2024;32(6):782-795
782-795
О предельных множествах простейших косых произведений на многомерных клетках
Аннотация
Цель работы состоит в описании двух важнейших типов предельных множеств простейших косых произведений отображений интервала, фазовым пространством каждого из которых является компактная n-мерная клетка (n ≥ 2): во-первых, неблуждающего множества и, во-вторых, ω -предельных множеств траекторий. Методы. Предложен метод исследования неблуждающего множества (новый даже для двумерного случая), основанный на использовании понятия C0 - Ω-взрыва в непрерывных отображениях отрезка, и введенного в работе понятия C0- Ω-взрыва в семействе непрерывных отображений в слоях. Для описания ω-предельных множеств использована техника специальных рядов, построенных по траектории и содержащих информацию о ее асимптотическом поведении. Результаты. Дано полное описание неблуждающего множества непрерывного простейшего косого произведения отображений интервала, то есть непрерывного косого произведения на компактной n-мерной клетке, множество (наименьших) периодов периодических точек которого ограничено. Результаты, полученные при описании неблуждающего множества, использованы при изучении ω-предельных множеств. В работе дано описание топологической структуры ω-предельных множеств рассматриваемых отображений. Найдены достаточные условия, при выполнении которых ω-предельным множеством траектории является периодическая орбита, а также необходимые условия существования одномерных ω-предельных множеств. Заключение. Дальнейшее развитие техники C0- Ω-взрыва в семействе отображений в слоях позволит описать структуру неблуждающего множества косых произведений одномерных отображений, в частности, с замкнутым множеством периодических точек, заданных на простейших многообразиях произвольной конечной размерности. Дальнейшее развитие теории специальных, построенных в работе расходящихся рядов позволит перейти к описанию ω-предельных множеств произвольной размерности d, где 2 ≤ d ≤ n - 1, n ≥ 3, в простейших косых произведениях.
Известия высших учебных заведений. Прикладная нелинейная динамика. 2024;32(6):796-815
796-815
Об аттракторах лоренцевского типа в шестимерном обобщении модели Лоренца
Аннотация
Тема работы — аттракторы лоренцевского типа в многомерных системах. Рассматривается шестимерная модель, описывающая конвекцию в слое жидкости с учетом примесей в атмосфере и жидкости, а также вращения Земли. Основная цель работы — исследование бифуркаций в соответствующей системе и описание сценариев возникновения хаотических аттракторов разного типа. Результаты. Показано, что в рассматриваемой системе может возникать как классический аттрактор Лоренца, теория которого была разработана в работах Афраймовича–Быкова–Шильникова, так и аттрактор нового типа, визуально похожий на аттрактор Лоренца, но содержащий при этом симметричную пару состояний равновесия. Установлено, что аттрактор Лоренца в данной системе рождается в результате классического сценария, предложенного Шильниковым. Предложен новый сценарий возникновения аттрактора второго типа в результате бифуркаций аттрактора Лоренца. В работе также обсуждаются гомоклинические и гетероклинические бифуркации, неизбежно возникающие внутри обнаруженных аттракторов, а также их возможная псевдогиперболичность.
Известия высших учебных заведений. Прикладная нелинейная динамика. 2024;32(6):816-831
816-831
О дискретных аттракторах Лоренца различных типов
Аннотация
Цель настоящей работы — развитие теории дискретных аттракторов лоренцевского типа в случае трехмерных отображений. При этом особое внимание будет уделено стандартным дискретным аттракторам Лоренца, а также дискретным аттракторам Лоренца с осевой симметрией (то есть с симметрией x → -x, y → -y, z → -z, характерной для потоков с аттракторами Лоренца). Основные результаты работы связаны с построением элементов классификации таких аттракторов. Для различных типов дискретных аттракторов Лоренца мы опишем их основные геометрические свойства и свойства динамики, а также представим основные феноменологические бифуркационные сценарии, в которых они возникают. В работе будут также рассмотрены конкретные примеры дискретных аттракторов Лоренца различных типов в трехмерных квадратичных отображениях, таких как трехмерные отображения Эно и квадратичные отображения с осевой симметрией и постоянным якобианом. Для последних будут построены их нормальные формы — универсальные отображения, к которым сводится любое отображение из данного класса с помощью линейных преобразований координат.
Известия высших учебных заведений. Прикладная нелинейная динамика. 2024;32(6):832-857
832-857
Метод траекторных аттракторов для диссипативных уравнений в частных производных с малым параметром
Аннотация
Цель настоящего исследования — изучение предельного поведения траекторных аттракторов диссипативных уравнений и систем математической физики, зависящих от малого параметра, когда малый параметр стремится к нулю. Основное внимание уделено случаям, когда для предельного уравнения не выполнена или не доказана теорема единственности решения соответствующей начально-краевой задачи. Рассматриваются следующие задачи: аппроксимация 3D-системы Навье–Стокса с помощью α-модели Лерэ, усреднение комплексного уравнения Гинзбурга–Ландау в области с густой перфорацией, а также предел нулевой вязкости 2D-системы Навье–Стокса с экмановским трением. Методы. В данной работе используется метод траекторных динамических систем и траекторных аттракторов, который особенно эффективен при изучении сложных уравнений с частными производными, для которых не имеет место или не доказана теорема единственности решения соответствующей начально-краевой задачи. Результаты. Для всех рассмотренных задач получены предельные уравнения и доказана сходимость по Хаусдорфу траекторных аттракторов исходных уравнений к траекторным аттракторам предельных уравнений в подходящей топологии, когда малый параметр стремится к нулю. Заключение. В работе показано, что метод траекторных аттракторов весьма эффективен при исследовании диссипативных уравнений математической физики с малым параметром. Удается найти предельные уравнения и доказать сходимость траекторных аттракторов изучаемых уравнений к траекторным аттракторам предельных уравнений в соответствующей топологии, когда малый параметр стремится к нулю.
Известия высших учебных заведений. Прикладная нелинейная динамика. 2024;32(6):858-877
858-877
Пространственная динамика в семействе дифференциальных уравнений шестого порядка из теории структурообразования
Аннотация
Тема работы. Изучаются ограниченные стационарные (то есть не зависящие от времени) пространственноодномерные решения квазилинейного параболического уравнения с частными производными, рассматриваемого на всей числовой прямой. Его стационарные решения описываются нелинейным дифференциальным уравнением 6-го порядка, имеющим тип уравнения Эйлера–Лагранжа–Пуассона, и поэтому приводимого к гамильтоновой системе с тремя степенями свободы, которая также обратима относительно двух линейных инволюций. Система имеет три симметричных состояния равновесия, два из которых являются гиперболическими в некоторой области значений параметров. Цель работы. В работе, комбинируя методы теории динамических систем и численные методы, исследуется поведение траекторий в окрестности симметричного гетероклинического контура, основанного на этих состояниях равновесия, показано существование как простых траекторий (периодических), так и траекторий со сложным поведением. Для этого, в частности, используется теорема о глобальном инвариантном многообразии для гетероклинического контура. Для симметричного состояния равновесия в начале координат найдена область параметров, где оно является седло-фокус-центром, показано существование гомоклинических траекторий этого состояния равновесия, долго-периодических траекторий в их окрестности, а также траекторий со сложным поведением.
Известия высших учебных заведений. Прикладная нелинейная динамика. 2024;32(6):878-896
878-896
Группы базовых автоморфизмов хаотических картановых слоений со связностью Эресмана
Аннотация
Цель работы — исследование групп базовых автоморфизмов хаотических картановых слоений со связностью Эресмана. Картановы слоения образуют категорию, где автоморфизмы сохраняют не только слоение, но и его трансверсальную картанову геометрию. Группой базовых автоморфизмов слоения называется фактор-группа группы всех автоморфизмов этого слоения по нормальной подгруппе слоевых автоморфизмов, относительно которых каждый слой инвариантен. Картановы слоения включают в себя такие обширные классы слоений как псевдоримановы, лоренцевы, слоения с трансверсальной аффинной связностью. Ограничения на размерность как слоения, так и слоеного многообразия не накладываются. Компактность слоеного многообразия не предполагается. Методы. Доказательство структурной теоремы для хаотических картановых слоений основано на применении конструкции слоеного расслоения, обычно используемой в теории слоений с трансверсальными геометриями. Результаты. Основным результатом данной работы является теорема о том, что группа базовых автоморфизмов любого хаотического картанова слоения со связностью Эресмана допускает структуру группы Ли и нахождение оценок размерности этой группы. В частности, доказано, что если множество замкнутых слоев счетно, то группа базовых автоморфизмов такого слоения счетна. Заключение. В настоящей работе доказан критерий, согласно которому хаотичность картанова слоения типа (G, H) эквивалентна хаотичности локально свободного действия группы H на ассоциированном параллелизуемом многообразии. Таким образом, проблема существования хаоса в картановых слоениях со связностью Эресмана сводится к той же проблеме для локально свободных действий группы Ли на параллелизуемых многообразиях.
Известия высших учебных заведений. Прикладная нелинейная динамика. 2024;32(6):897-907
897-907
Моделирование глобальных процессов. Нелинейная динамика и гуманитарные науки
Асимптотическое решение для SIS-модели с учётом миграции и диффузии
Аннотация
Цель настоящей работы — предложить и исследовать простую и эффективную модель эпидемии в популяции животных, учитывающую миграцию по плоскости как заболевших, так и оставшихся здоровыми особей. В рамках данной модели пространственная миграция популяции описывается введением в её уравнения и диффузионных, и адвективных членов. Методы. В данной работе для нахождения асимптотического решения системы уравнений эпидемии применялся метод многих масштабов. Решения вспомогательных линейных уравнений параболического типа, возникающих при проведении этой процедуры, находились с помощью интеграла Пуассона. Упрощение исходной системы уравнений модели производится на основе предположения о постоянстве в начальный момент времени суммы плотностей здоровых и больных особей на односвязной области большого диаметра на плоскости. Результаты. Показано, что в этом случае сконструированное для медленно меняющейся начальной плотности больных особей, сосредоточенной внутри этой области на значительном удалении от её границ, асимптотическое решение модели описывает эффект слияния нескольких пространственно-разнесённых небольших вспышек заболевания в одну большую вспышку при миграции всей популяции как целого. В частности, для такой начальной плотности, получающейся функциональным преобразованием гауссоиды, на больших временах формируется круговое «плато» с линейно растущим со временем эффективным радиусом. Заключение. Построенное асимптотическое решение предложенной в данной работе модели эпидемии несложно по форме и описывает перенос заболевания на локально плоском участке земной поверхности без применения численных методов. Такое решение удобно при описании миграции больной популяции под воздействием наводнения, лесного пожара, техногенной катастрофы с заражением местности и т. д.
Известия высших учебных заведений. Прикладная нелинейная динамика. 2024;32(6):908-920
908-920


