Спайковая нейронная сеть с локальной пластичностью и разреженной связью для классификации аудио
- Авторы: Рыбка Р.Б.1, Власов Д.С.1, Манжуров А.И.1, Серенко А.В.1, Сбоев А.Г.1
-
Учреждения:
- НИЦ "Курчатовский институт"
- Выпуск: Том 32, № 2 (2024)
- Страницы: 239-252
- Раздел: Статьи
- URL: https://medbiosci.ru/0869-6632/article/view/254257
- DOI: https://doi.org/10.18500/0869-6632-003094
- EDN: https://elibrary.ru/QTJDPC
- ID: 254257
Цитировать
Полный текст
Аннотация
Ключевые слова
Об авторах
Роман Борисович Рыбка
НИЦ "Курчатовский институт"
SPIN-код: 7355-4994
Scopus Author ID: 55696423700
пл. Академика Курчатова 1
Данила Сергеевич Власов
НИЦ "Курчатовский институт"пл. Академика Курчатова 1
Александр Игоревич Манжуров
НИЦ "Курчатовский институт"пл. Академика Курчатова 1
Алексей Вячеславович Серенко
НИЦ "Курчатовский институт"
ORCID iD: 0000-0002-2321-9879
Scopus Author ID: 57188757502
пл. Академика Курчатова 1
Александр Георгиевич Сбоев
НИЦ "Курчатовский институт"
Scopus Author ID: 57194755264
пл. Академика Курчатова 1
Список литературы
- Davies M, Srinivasa N, Lin T-H, Chinya G, Cao Y, Choday SH, Dimou G, Joshi P, Imam N, Jain S, Liao Y, Lin C-K, Lines A, Liu R, Mathaikutty D, McCoy S, Paul A, Tse J, Venkataramanan G, Weng Y-H, Wild A, Yang Y, Wang H. Loihi: A neuromorphic manycore processor with on-chip learning. IEEE Micro. 2018;38(1):82–99. doi: 10.1109/MM.2018.112130359.
- Merolla PA, Arthur JV, Alvarez-Icaza R, Cassidy AS, Sawada J, Akopyan F, Jackson BL, Imam N, Guo C, Nakamura Y, Brezzo B, Vo I, Esser SK, Appuswamy R, Taba B, Amir A, Flickner MD, Risk WP, Manohar R, Modha DS. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science. 2014;345(6197):668–673. doi: 10.1126/science. 1254642.
- Matsukatova AN, Vdovichenko AY, Patsaev TD, Forsh PA, Kashkarov PK, Demin VA, Emelyanov AV. Scalable nanocomposite parylene-based memristors: Multifilamentary resistive switching and neuromorphic applications. Nano Research. 2023;16(2):3207–3214. doi: 10.1007/s12274- 022-5027-6.
- Matsukatova AN, Iliasov AI, Nikiruy KE, Kukueva EV, Vasiliev AL, Goncharov BV, Sitnikov AV, Zanaveskin ML, Bugaev AS, Demin VA, Rylkov VV, Emelyanov AV. Convolutional neural network based on crossbar arrays of (Co-Fe-B)×(LiNbO3)100-x nanocomposite memristors. Nanomaterials. 2022;12(19):3455. doi: 10.3390/nano12193455.
- Bordanov I, Antonov A, Korolev L. Simulation of calculation errors in memristive crossbars for artificial neural networks. In: 2023 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM). 15-19 May 2023, Sochi, Russian Federation. IEEE; 2023. P. 1008–1012. doi: 10.1109/ICIEAM57311.2023.10139308.
- Vlasov D, Minnekhanov A, Rybka R, Davydov Y, Sboev A, Serenko A, Ilyasov A, Demin V. Memristor-based spiking neural network with online reinforcement learning. Neural Networks. 2023;166:512–523. doi: 10.1016/j.neunet.2023.07.031.
- Tao T, Li D, Ma H, Li Y, Tan S, Liu E-X, Schutt-Aine J, Li E-P. A new pre-conditioned STDP rule and its hardware implementation in neuromorphic crossbar array. Neurocomputing. 2023;557:126682. doi: 10.1016/j.neucom.2023.126682.
- Sboev A, Serenko A, Rybka R, Vlasov D. Solving a classification task by spiking neural network with STDP based on rate and temporal input encoding. Mathematical Methods in the Applied Sciences. 2020;43(13):7802–7814. doi: 10.1002/mma.6241.
- Sboev A, Vlasov D, Rybka R, Davydov Y, Serenko A, Demin V. Modeling the dynamics of spiking networks with memristor-based STDP to solve classification tasks. Mathematics. 2021;9(24):3237. doi: 10.3390/math9243237.
- Diehl PU, Cook M. Unsupervised learning of digit recognition using spike-timing-dependent plasticity. Frontiers in Computational Neuroscience. 2015;9:99. doi: 10.3389/fncom.2015.00099.
- Sboev A, Davydov Y, Rybka R, Vlasov D, Serenko A. A comparison of two variants of memristive plasticity for solving the classification problem of handwritten digits recognition. In: Klimov VV, Kelley DJ, editors. Biologically Inspired Cognitive Architectures 2021. BICA 2021. Vol. 1032 of Studies in Computational Intelligence. Cham: Springer; 2022. P. 438–446. doi: 10.1007/978-3- 030-96993-6_48.
- Vlasov D, Davydov Y, Serenko A, Rybka R, Sboev A. Spoken digits classification based on spiking neural networks with memristor-based STDP. In: 2022 International Conference on Computational Science and Computational Intelligence (CSCI). 14-16 December 2022, Las Vegas, NV, USA. IEEE; 2022. P. 330–335. doi: 10.1109/CSCI58124.2022.00066.
- Lien H-H, Chang T-S. Sparse compressed spiking neural network accelerator for object detection. IEEE Transactions on Circuits and Systems I: Regular Papers. 2022;69(5):2060–2069. DOI: 10. 1109/TCSI.2022.3149006.
- Tsai C-C, Yang Y-H, Lin H-W, Wu B-X, Chang EC, Liu HY, Lai J-S, Chen PY, Lin J-J, Chang JS, Wang L-J, Kuo TT, Hwang J-N, Guo J-I. The 2020 embedded deep learning object detection model compression competition for traffic in Asian countries. In: 2020 IEEE International Conference on Multimedia & Expo Workshops (ICMEW). 06-10 July 2020, London, UK. IEEE; 2020. P. 1–6. doi: 10.1109/ICMEW46912.2020.9106010.
- Han B, Zhao F, Zeng Y, Pan W. Adaptive sparse structure development with pruning and regeneration for spiking neural networks. arXiv:2211.12219. arXiv Preprint; 2022. 9 p. DOI: 10. 48550/arXiv.2211.12219.
- Amiri M, Jafari AH, Makkiabadi B, Nazari S. Recognizing intertwined patterns using a network of spiking pattern recognition platforms. Scientific Reports. 2022;12(1):19436. doi: 10.1038/s41598- 022-23320-8.
- Timcheck J, Shrestha SB, Rubin DBD, Kupryjanow A, Orchard G, Pindor L, Shea T, Davies M. The intel neuromorphic DNS challenge. arXiv:2303.09503. arXiv Preprint; 2023. 13 p. DOI: 10. 48550/arXiv.2303.09503.
- McFee B, Raffel C, Liang D, Ellis DPW, McVicar M, Battenberg E, Nieto O. librosa: Audio and music signal analysis in python. In: Proceedings of the 14th Python in Science Conference. SciPy; 2015. P. 18–24. doi: 10.25080/Majora-7b98e3ed-003.
- Morrison A, Diesmann M, Gerstner W. Phenomenological models of synaptic plasticity based on spike timing. Biological Cybernetics. 2008;98(6):459–478. doi: 10.1007/s00422-008-0233-1.
- Bergstra J, Yamins D, Cox DD. Hyperopt: a Python library for model selection and hyperparameter optimization. In: Proceedings of the 12th Python in Science Conference. SciPy; 2013. P. 13–19.
Дополнительные файлы


