Allosteric Regulators of the Thyroid-Stimulating Hormone Receptor – New Horizons in the Pharmacology of Thyroid Pathology

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The thyroid stimulating hormone receptor (TSHR) expressed in the thyroid gland is a key component of the TSH-regulated signaling system responsible for the synthesis of thyroid hormones and the growth and proliferation of thyroid cells. The TSH receptor is also present in some non-thyroid tissues (bone tissue, orbital fibroblasts, etc.), controlling their physiological functions. It has a large ectodomain containing a high-affinity orthosteric site that binds TSH and autoantibodies to TSHR, as well as a transmembrane domain containing a significant number of allosteric sites with different localizations. Activation of TSHR by the hormone leads to the launch of a large number of signaling cascades mediated through various types of G proteins and β-arrestins. The selectivity and efficiency of activation of these cascades are largely determined by allosteric mechanisms, which include the formation of TSHR complexes, the effect on TSH signaling of the “internal” agonist localized at the C-terminus of the hinge loop of the TSHR ectodomain, and the N-glycosylation status of TSH. Changes in TSHR activity are the causes of a large number of thyroid diseases and other pathologies, but at present TSHR regulators are practically not used in medicine. Other therapy is not directly targeted at TSHR, which is associated with many of their side effects. Since the use of ligands of the TSHR orthosteric site carries significant risks, the attention of researchers is attracted by ligands of its allosteric sites, including those localized in the transmembrane channel. They have a wide profile of pharmacological activity, including regulators with their own activity (direct and inverse agonists, and neutral antagonists), modulators of TSH effects (PAM, NAM, SAM, and BAM) and regulators with combined activity (ago-PAM, ago-NAM). Allosteric ligands are endowed with moderate activity, without causing hyperactivation or complete blockade of TSHR, in many cases demonstrate selectivity for certain signaling cascades, and retain activity when administered orally. Thus, they can be used to treat various thyroid diseases, including Graves' disease, Hashimoto's thyroiditis, primary hypothyroidism, adenomas and thyroid cancer, as well as Graves' ophthalmopathy and diseases of the musculoskeletal system. The review systematizes and analyzes data on low-molecular allosteric regulators of TSHR developed by us and other authors, and assesses the prospects for their use in the clinic.

Авторлар туралы

A. Shpakov

Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences

Email: alex_shpakov@list.ru
St. Petersburg, Russia

K. Derkach

Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences

St. Petersburg, Russia

Әдебиет тізімі

  1. Ortiga-Carvalho TM, Chiamolera MI, Pazos-Moura CC, Wondisford FE (2016) HypothalamusPituitary-Thyroid Axis. Compr Physiol 6(3): 1387–1428. http://doi.org/10.1002/cphy.c150027
  2. Contreras-Jurado C (2025) Thyroid Hormones and Co-workers: An Overview. Methods Mol Biol 2876: 3–16. http://doi.org/10.1007/978-1-0716-4252-8_1
  3. Feldt-Rasmussen U, Effraimidis G, Klose M (2021) The hypothalamus-pituitary-thyroid (HPT)axis and its role in physiology and pathophysiology of other hypothalamus-pituitary functions. Mol Cell Endocrinol 525: 111173. http://doi.org/10.1016/j.mce.2021.111173
  4. Tuncel M (20117) Thyroid Stimulating Hormone Receptor. Mol Imaging Radionucl Ther 26(Suppl 1): 87–91. http://doi.org/10.4274/2017.26.suppl.10
  5. Naicker M, Naidoo S (2022) Cellular and molecular distribution of thyroid-specific proteins, thyroid-stimulating hormone receptor (TSH-R) and thyroglobulin (TG) in the central nervous system. Neurochem Int 155: 105305. http://doi.org/10.1016/j.neuint.2022.105305
  6. Lanzolla G, Marinò M, Menconi F (2024) Graves disease: latest understanding of pathogenesis and treatment options. Nat Rev Endocrinol 20(11): 647–660. http://doi.org/10.1038/s41574-024-01016-5
  7. Gluvic Z, Obradovic M, Stewart AJ, Essack M, Pitt SJ, Samardzic V, Soskic S, Gojobori T, Isenovic ER (2021) Levothyroxine Treatment and the Risk of Cardiac Arrhythmias – Focus on the Patient Submitted to Thyroid Surgery. Front Endocrinol (Lausanne) 12: 758043. http://doi.org/10.3389/fendo.2021.758043
  8. Jin M, Jang A, Kim CA, Kim TY, Kim WB, Shong YK, Jeon MJ, Kim WG (2023) Long-term followup result of antithyroid drug treatment of Graves' hyperthyroidism in a large cohort. Eur Thyroid J 12(2): e220226. http://doi.org/10.1530/ETJ-22-0226
  9. Fan QR, Hendrickson WA (2005) Structural biology of glycoprotein hormones and their receptors. Endocrine 26(3): 179–188. http://doi.org/10.1385/endo:26:3:179
  10. Fröhlich E, Wahl R (2023) Pars Distalis and Pars Tuberalis Thyroid-Stimulating Hormones and Their Roles in Macro-Thyroid-Stimulating Hormone Formation. Int J Mol Sci 24(14): 11699. http://doi.org/10.3390/ijms241411699
  11. Wide L, Eriksson K (2019) Unique Pattern of N-Glycosylation, Sialylation, and Sulfonation on TSH Molecules in Serum of Children Up to 18 Months. J Clin Endocrinol Metab 104(10): 4651–4659. http://doi.org/10.1210/jc.2018-02576
  12. Wide L, Eriksson K (2021) Thyrotropin N-glycosylation and Glycan Composition in Severe Primary Hypothyroidism. J Endocr Soc 5(4): bvab006. http://doi.org/10.1210/jendso/bvab006
  13. Estrada JM, Soldin D, Buckey TM, Burman KD, Soldin OP (2014) Thyrotropin isoforms: implications for thyrotropin analysis and clinical practice. Thyroid 24(3): 411–423. http://doi.org/10.1089/thy.2013.0119
  14. Querat B (2021) Unconventional Actions of Glycoprotein Hormone Subunits: A Comprehensive Review. Front Endocrinol (Lausanne) 12: 731966. http://doi.org/10.3389/fendo.2021.731966
  15. Wondisford FE (2002) The thyroid axis just got more complicated. J Clin Invest 109(11): 1401–1402. http://doi.org/10.1172/JCI15865
  16. Brokken LJ, Scheenhart JW, Wiersinga WM, Prummel MF (2001) Suppression of serum TSH by Graves' Ig: evidence for a functional pituitary TSH receptor. J Clin Endocrinol Metab 86(10): 4814–4817. http://doi.org/10.1210/jcem.86.10.7922
  17. Prummel MF, Brokken LJ, Wiersinga WM (2004) Ultra short-loop feedback control of thyrotropin secretion. Thyroid 14(10): 825–829. http://doi.org/10.1089/thy.2004.14.825
  18. Yang Q, Li J, Kou C, Zhang L, Wang X, Long Y, Ni J, Li S, Zhang H (2022) Presence of TSHR in NK Cells and Action of TSH on NK Cells. Neuroimmunomodulation 29(1): 77–84. http://doi.org/10.1159/000516925
  19. Mendonça-Reis E, Guimarães-Nobre CC, Teixeira-Alves LR, Miranda-Alves L, Berto-Junior C (2024) TSH Receptor Reduces Hemoglobin S Polymerization and Increases Deformability and Adhesion of Sickle Erythrocytes. Anemia 2024: 7924015. http://doi.org/10.1155/2024/7924015
  20. Kleinau G, Worth CL, Kreuchwig A, Biebermann H, Marcinkowski P, Scheerer P, Krause G (2017) Structural-Functional Features of the Thyrotropin Receptor: A Class A G-Protein-Coupled Receptor at Work. Front Endocrinol (Lausanne) 8: 86. http://doi.org/10.3389/fendo.2017.00086
  21. Duan J, Xu P, Cheng X, Mao C, Croll T, He X, Shi J, Luan X, Yin W, You E, Liu Q, Zhang S, Jiang H, Zhang Y, Jiang Y, Xu HE (2021) Structures of full-length glycoprotein hormone receptor signalling complexes. Nature 598(7882): 688–692. http://doi.org/10.1038/s41586-021-03924-2
  22. Duan J, Xu P, Luan X, Ji Y, He X, Song N, Yuan Q, Jin Y, Cheng X, Jiang H, Zheng J, Zhang S, Jiang Y, Xu HE (2022) Hormone- and antibody-mediated activation of the thyrotropin receptor. Nature 609(7928): 854–859. http://doi.org/10.1038/s41586-022-05173-3
  23. Xiang P, Latif R, Morshed S, Davies TF (2024) Hypothyroidism Induced by a TSH Receptor Peptide-Implications for Thyroid Autoimmunity. Thyroid 34(12): 1513–1521. http://doi.org/10.1089/thy.2024.0089
  24. Krieger CC, Neumann S, Gershengorn MC (2020) Is There Evidence for IGF1R-Stimulating Abs in Graves' Orbitopathy Pathogenesis? Int J Mol Sci 21(18): 6561. http://doi.org/10.3390/ijms21186561
  25. Faust B, Billesbølle CB, Suomivuori CM, Singh I, Zhang K, Hoppe N, Pinto AFM, Diedrich JK, Muftuoglu Y, Szkudlinski MW, Saghatelian A, Dror RO, Cheng Y, Manglik A (2022) Autoantibody mimicry of hormone action at the thyrotropin receptor. Nature 609(7928): 846–853. http://doi.org/10.1038/s41586-022-05159-1
  26. Taylor PN, Albrecht D, Scholz A, Gutierrez-Buey G, Lazarus JH, Dayan CM, Okosieme OE (2018) Global epidemiology of hyperthyroidism and hypothyroidism. Nat Rev Endocrinol 14(5): 301–316. http://doi.org/10.1038/nrendo.2018.18
  27. Boutin A, Gershengorn MC, Neumann S (2020) β-Arrestin 1 in Thyrotropin Receptor Signaling in Bone: Studies in Osteoblast-Like Cells. Front Endocrinol (Lausanne) 11: 312. http://doi.org/10.3389/fendo.2020.00312
  28. Vieira IH, Rodrigues D, Paiva I (2022) The Mysterious Universe of the TSH Receptor. Front Endocrinol (Lausanne) 13: 944715. http://doi.org/10.3389/fendo.2022.944715
  29. Laugwitz KL, Allgeier A, Offermanns S, Spicher K, Van Sande J, Dumont JE, Schultz G (1996) The human thyrotropin receptor: a heptahelical receptor capable of stimulating members of all four G protein families. Proc Natl Acad Sci U S A 93(1): 116–120. http://doi.org/10.1073/pnas.93.1.116
  30. Büch TR, Biebermann H, Kalwa H, Pinkenburg O, Hager D, Barth H, Aktories K, Breit A, Gudermann T (2008) G13-dependent activation of MAPK by thyrotropin. J Biol Chem 283(29): 20330–20341. http://doi.org/10.1074/jbc.M800211200
  31. Boutin A, Krieger CC, Marcus-Samuels B, Klubo-Gwiezdzinska J, Neumann S, Gershengorn MC (2020) TSH Receptor Homodimerization in Regulation of cAMP Production in Human Thyrocytes in vitro. Front Endocrinol (Lausanne) 11: 276. http://doi.org/10.3389/fendo.2020.00276
  32. Krause G, Eckstein A, Schülein R (2020) Modulating TSH Receptor Signaling for Therapeutic Benefit. Eur Thyroid J 9(Suppl 1): 66–77. http://doi.org/10.1159/000511871
  33. Postiglione MP, Parlato R, Rodriguez-Mallon A, Rosica A, Mithbaokar P, Maresca M, Marians RC, Davies TF, Zannini MS, De Felice M, Di Lauro R (2002) Role of the thyroid-stimulating hormone receptor signaling in development and differentiation of the thyroid gland. Proc Natl Acad Sci U S A 99(24): 15462–15467. http://doi.org/10.1073/pnas.242328999
  34. Bruno R, Ferretti E, Tosi E, Arturi F, Giannasio P, Mattei T, Scipioni A, Presta I, Morisi R, Gulino A, Filetti S, Russo D (2005) Modulation of thyroid-specific gene expression in normal and nodular human thyroid tissues from adults: an in vivo effect of thyrotropin. J Clin Endocrinol Metab 90(10): 5692–5697. http://doi.org/10.1210/jc.2005-0800
  35. Michalek K, Morshed SA, Latif R, Davies TF (2009) TSH receptor autoantibodies. Autoimmun Rev 9(2): 113–116. http://doi.org/10.1016/j.autrev.2009.03.012
  36. Boutin A, Eliseeva E, Gershengorn MC, Neumann S (2014) β-Arrestin-1 mediates thyrotropinenhanced osteoblast differentiation. FASEB J 28(8): 3446–3455. http://doi.org/10.1096/fj.14-251124
  37. Cui X, Wang F, Liu C (2023) A review of TSHR- and IGF-1R-related pathogenesis and treatment of Graves' orbitopathy. Front Immunol 14: 1062045. http://doi.org/10.3389/fimmu.2023.1062045
  38. Bonomi M, Busnelli M, Persani L, Vassart G, Costagliola S (2006) Structural differences in the hinge region of the glycoprotein hormone receptors: evidence from the sulfated tyrosine residues. Mol Endocrinol 20(12): 3351–3363. http://doi.org/10.1210/me.2005-0521
  39. Mueller S, Szkudlinski MW, Schaarschmidt J, Günther R, Paschke R, Jaeschke H (2011) Identification of novel TSH interaction sites by systematic binding analysis of the TSHR hinge region. Endocrinology 152(8): 3268–3278. http://doi.org/10.1210/en.2011-0153
  40. Krause G, Marcinkowski P (2018) Intervention Strategies into Glycoprotein Hormone Receptors for Modulating (Mal-)function, with Special Emphasis on the TSH Receptor. Horm Metab Res 50(12):894–907. http://doi.org/10.1055/a-0749-6528 Erratum in: (2018) Horm Metab Res 50(12): e8. http://doi.org/10.1055/a-0789-9317
  41. Yeste D, Baz-Redón N, Antolín M, Garcia-Arumí E, Mogas E, Campos-Martorell A, GonzálezLlorens N, Aguilar-Riera C, Soler-Colomer L, Clemente M, Fernández-Cancio M, CamatsTarruella N (2024) Genetic and Functional Studies of Patients with Thyroid Dyshormonogenesis and Defects in the TSH Receptor (TSHR). Int J Mol Sci 25(18): 10032. http://doi.org/10.3390/ijms251810032
  42. Bock A, Bermudez M (2021) Allosteric coupling and biased agonism in G protein-coupled receptors. FEBS J 288(8): 2513–2528. http://doi.org/10.1111/febs.15783
  43. Shpakov AO (2023) Allosteric Regulation of G-Protein-Coupled Receptors: From Diversity of Molecular Mechanisms to Multiple Allosteric Sites and Their Ligands. Int J Mol Sci 24(7): 6187. http://doi.org/10.3390/ijms24076187
  44. Shpakov AO (2024) Hormonal and Allosteric Regulation of the Luteinizing Hormone/Chorionic Gonadotropin Receptor. Front Biosci (Landmark Ed) 29(9): 313. http://doi.org/10.31083/j.fbl2909313
  45. Schulze A, Kleinau G, Neumann S, Scheerer P, Schöneberg T, Brüser A (2020) The intramolecular agonist is obligate for activation of glycoprotein hormone receptors. FASEB J 34(8): 11243–11256. http://doi.org/10.1096/fj.202000100R
  46. Krause G, Kreuchwig A, Kleinau G (2012) Extended and structurally supported insights into extracellular hormone binding, signal transduction and organization of the thyrotropin receptor. PLoS One 7(12): e52920. http://doi.org/10.1371/journal.pone.0052920
  47. Vlaeminck-Guillem V, Ho SC, Rodien P, Vassart G, Costagliola S (2002) Activation of the cAMP pathway by the TSH receptor involves switching of the ectodomain from a tethered inverse agonist to an agonist. Mol Endocrinol 16(4): 736–746. http://doi.org/10.1210/mend.16.4.0816
  48. Brüser A, Schulz A, Rothemund S, Ricken A, Calebiro D, Kleinau G, Schöneberg T (2016) The Activation Mechanism of Glycoprotein Hormone Receptors with Implications in the Cause and Therapy of Endocrine Diseases. J Biol Chem 291(2): 508–520. http://doi.org/10.1074/jbc.M115.701102
  49. Schaarschmidt J, Nagel MBM, Huth S, Jaeschke H, Moretti R, Hintze V, von Bergen M, Kalkhof S, Meiler J, Paschke R (2016) Rearrangement of the Extracellular Domain/Extracellular Loop 1 Interface Is Critical for Thyrotropin Receptor Activation. J Biol Chem 291(27): 14095–14108. http://doi.org/10.1074/jbc.M115.709659
  50. He X, Duan J, Ji Y, Zhao L, Jiang H, Jiang Y, Eric Xu H, Cheng X (2022) Hinge region mediates signal transmission of luteinizing hormone and chorionic gonadotropin receptor. Comput Struct Biotechnol J 20: 6503–6511. http://doi.org/10.1016/j.csbj.2022.11.039
  51. Lazim R, Suh D, Lee JW, Vu TNL, Yoon S, Choi S (2021) Structural Characterization of ReceptorReceptor Interactions in the Allosteric Modulation of G Protein-Coupled Receptor (GPCR) Dimers. Int J Mol Sci 22(6): 3241. http://doi.org/10.3390/ijms22063241
  52. Mirchandani-Duque M, Choucri M, Hernández-Mondragón JC, Crespo-Ramírez M, PérezOlives C, Ferraro L, Franco R, Pérez de la Mora M, Fuxe K, Borroto-Escuela DO (2024) Membrane Heteroreceptor Complexes as Second-Order Protein Modulators: A Novel Integrative Mechanism through Allosteric Receptor-Receptor Interactions. Membranes (Basel) 14(5): 96. http://doi.org/10.3390/membranes14050096
  53. Ulloa-Aguirre A, Zariñán T (2016) The Follitropin Receptor: Matching Structure and Function. Mol Pharmacol 90(5):596–608. http://doi.org/10.1124/mol.116.104398 Erratum in: (2017) Mol Pharmacol 91(1): 48. http://doi.org/10.1124/mol.111.104398err
  54. Latif R, Michalek K, Davies TF (2010) Subunit interactions influence TSHR multimerization. Mol Endocrinol 24(10): 2009–2018. http://doi.org/10.1210/me.2010-0001
  55. Krieger CC, Boutin A, Neumann S, Gershengorn MC (2022) Proximity ligation assay to study TSH receptor homodimerization and crosstalk with IGF-1 receptors in human thyroid cells. Front Endocrinol (Lausanne) 13: 989626. http://doi.org/10.3389/fendo.2022.989626
  56. Allen MD, Neumann S, Gershengorn MC (2011) Occupancy of both sites on the thyrotropin (TSH) receptor dimer is necessary for phosphoinositide signaling. FASEB J 25(10): 3687–3694. http://doi.org/10.1096/fj.11-188961
  57. Latif R, Ando T, Davies TF (2007) Lipid rafts are triage centers for multimeric and monomeric thyrotropin receptor regulation. Endocrinology 148(7): 3164–3175. http://doi.org/10.1210/en.2006-1580
  58. Mezei M, Latif R, Davies TF (2022) Modeling TSH Receptor Dimerization at the Transmembrane Domain. Endocrinology 163(12): bqac168. http://doi.org/10.1210/endocr/bqac168
  59. De Gregorio F, Pellegrino M, Picchietti S, Belardinelli MC, Taddei AR, Fausto AM, Rossi M, Maggio R, Giorgi F (2011) The insecticide 1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane (DDT) alters the membrane raft location of the TSH receptor stably expressed in Chinese hamster ovary cells. Toxicol Appl Pharmacol 253(2): 121–129. http://doi.org/10.1016/j.taap.2011.03.018
  60. Calebiro D, de Filippis T, Lucchi S, Covino C, Panigone S, Beck-Peccoz P, Dunlap D, Persani L (2005) Intracellular entrapment of wild-type TSH receptor by oligomerization with mutants linked to dominant TSH resistance. Hum Mol Genet 14(20): 2991–3002. http://doi.org/10.1093/hmg/ddi329
  61. Tenenbaum-Rakover Y, Grasberger H, Mamanasiri S, Ringkananont U, Montanelli L, Barkoff MS, Dahood AM, Refetoff S (2009) Loss-of-function mutations in the thyrotropin receptor gene as a major determinant of hyperthyrotropinemia in a consanguineous community. J Clin Endocrinol Metab 94(5): 1706–1712. http://doi.org/10.1210/jc.2008-1938
  62. Biebermann H, Winkler F, Handke D, Teichmann A, Gerling B, Cameron F, Eichhorst J, Grüters A, Wiesner B, Kühnen P, Krude H, Kleinau G (2012) New pathogenic thyrotropin receptor mutations decipher differentiated activity switching at a conserved helix 6 motif of family A GPCR. J Clin Endocrinol Metab 97(2): E228–Е232. http://doi.org/10.1210/jc.2011-2106
  63. Zoenen M, Urizar E, Swillens S, Vassart G, Costagliola S (2012) Evidence for activity-regulated hormone-binding cooperativity across glycoprotein hormone receptor homomers. Nat Commun 3: 1007. http://doi.org/10.1038/ncomms1991
  64. Latif R, Ali MR, Mezei M, Davies TF (2015) Transmembrane domains of attraction on the TSH receptor. Endocrinology. 156(2): 488–498. http://doi.org/10.1210/en.2014-1509
  65. Ashim J, Seo MJ, Ji S, Heo J, Yu W (2025) Research approaches for exploring the hidden conversations of G protein-coupled receptor transactivation. Mol Pharmacol 107(6): 100043. http://doi.org/10.1016/j.molpha.2025.100043
  66. Lin HH (2025) An Alternative Mode of GPCR Transactivation: Activation of GPCRs by Adhesion GPCRs. Int J Mol Sci 26(2): 552. http://doi.org/10.3390/ijms26020552
  67. Zhang Y, Tan Y, Zhang Z, Cheng X, Duan J, Li Y (2024) Targeting Thyroid-Stimulating Hormone Receptor: A Perspective on Small-Molecule Modulators and Their Therapeutic Potential. J Med Chem 67(18): 16018–16034. http://doi.org/10.1021/acs.jmedchem.4c01525
  68. Derkach KV, Pechalnova AS, Sorokoumov VN, Zorina II, Morina IY, Chernenko EE, Didenko EA, Romanova IV, Shpakov AO (2025) Effect of a Low-Molecular-Weight Allosteric Agonist of the Thyroid-Stimulating Hormone Receptor on Basal and Thyroliberin-Stimulated Activity of Thyroid System in Diabetic Rats. Int J Mol Sci 26(2): 703. http://doi.org/10.3390/ijms26020703
  69. Shpakova EA, Shpakov AO, Chistyakova OV, Moyseyuk IV, Derkach KV (2012) Biological activity in vitro and in vivo of peptides corresponding to the third intracellular loop of thyrotropin receptor. Dokl Biochem Biophys 443: 64–67. http://doi.org/10.1134/S1607672912020020
  70. Derkach KV, Shpakova EA, Titov AK, Shpakov AO (2015) Intranasal and Intramuscular Administration of Lysine-Palmitoylated Peptide 612–627 of Thyroid-Stimulating Hormone Receptor Increases the Level of Thyroid Hormones in Rats. Int J Pept Res Ther 21: 249–260. http://doi.org/10.1007/s10989-014-9452-6
  71. van Straten NC, Schoonus-Gerritsma GG, van Someren RG, Draaijer J, Adang AE, Timmers CM, Hanssen RG, van Boeckel CA (2002) The first orally active low molecular weight agonists for the LH receptor: thienopyr(im)idines with therapeutic potential for ovulation induction. Chembiochemistry 3(10): 1023–1026. http://doi.org/10.1002/1439-7633(20021004)3:10<1023::AID-CBIC1023>3.0.CO;2-9
  72. Moore S, Jaeschke H, Kleinau G, Neumann S, Costanzi S, Jiang JK, Childress J, Raaka BM, Colson A, Paschke R, Krause G, Thomas CJ, Gershengorn MC (2006) Evaluation of smallmolecule modulators of the luteinizing hormone/choriogonadotropin and thyroid stimulating hormone receptors: structure-activity relationships and selective binding patterns. J Med Chem 49(13): 3888–3896. http://doi.org/10.1021/jm060247s
  73. Hoyer I, Haas AK, Kreuchwig A, Schülein R, Krause G (2013) Molecular sampling of the allosteric binding pocket of the TSH receptor provides discriminative pharmacophores for antagonist and agonists. Biochem Soc Trans 41(1): 213–217. http://doi.org/10.1042/BST20120319
  74. Neumann S, Kleinau G, Costanzi S, Moore S, Jiang JK, Raaka BM, Thomas CJ, Krause G, Gershengorn MC (2008) A low-molecular-weight antagonist for the human thyrotropin receptor with therapeutic potential for hyperthyroidism. Endocrinology 149(12): 5945–5950. http://doi.org/10.1210/en.2008-0836
  75. Neumann S, Huang W, Titus S, Krause G, Kleinau G, Alberobello AT, Zheng W, Southall NT, Inglese J, Austin CP, Celi FS, Gavrilova O, Thomas CJ, Raaka BM, Gershengorn MC (2009) Smallmolecule agonists for the thyrotropin receptor stimulate thyroid function in human thyrocytes and mice. Proc Natl Acad Sci U S A 106(30): 12471–12476. http://doi.org/10.1073/pnas.0904506106
  76. Neumann S, Gershengorn MC (2011) Small molecule TSHR agonists and antagonists. Ann Endocrinol (Paris) 72(2): 74–76. http://doi.org/10.1016/j.ando.2011.03.002
  77. Allen MD, Neumann S, Gershengorn MC (2011) Small-molecule thyrotropin receptor agonist activates naturally occurring thyrotropin-insensitive mutants and reveals their distinct cyclic adenosine monophosphate signal persistence. Thyroid 21(8): 907–912. http://doi.org/10.1089/thy.2011.0025
  78. Latif R, Ali MR, Ma R, David M, Morshed SA, Ohlmeyer M, Felsenfeld DP, Lau Z, Mezei M, Davies TF (2015) New small molecule agonists to the thyrotropin receptor. Thyroid 25(1): 51–62. http://doi.org/10.1089/thy.2014.0119
  79. Latif R, Morshed SA, Ma R, Tokat B, Mezei M, Davies TF (2020) A Gq Biased Small Molecule Active at the TSH Receptor. Front Endocrinol (Lausanne) 11: 372. http://doi.org/10.3389/fendo.2020.00372
  80. Neumann S, Malik SS, Marcus-Samuels B, Eliseeva E, Jang D, Klubo-Gwiezdzinska J, Krieger CC, Gershengorn MC (2020) Thyrotropin Causes Dose-dependent Biphasic Regulation of cAMP Production Mediated by Gs and Gi/o Proteins. Mol Pharmacol 97(1): 2–8. http://doi.org/10.1124/mol.119.117382
  81. Bakhtyukov AA, Derkach KV, Fokina EA, Sorokoumov VN, Zakharova IO, Bayunova LV, Shpakov AO (2022) Development of Low-Molecular-Weight Allosteric Agonist of ThyroidStimulating Hormone Receptor with Thyroidogenic Activity. Dokl Biochem Biophys 503(1): 67–70. http://doi.org/10.1134/S1607672922020016
  82. Derkach KV, Sorokoumov VN, Morina IY, Kuznetsova VS, Romanova IV, Shpakov AO (2024) Regulatory Effects of 5-Day Oral and Intraperitoneal Administration of a Thienopyrimidine Derivative on the Thyroid Status in Rats. Bull Exp Biol Med 177(4): 559–563. http://doi.org/10.1007/s10517-024-06223-8
  83. Sarkar R, Bolel P, Kapoor A, Eliseeva E, Dulcey AE, Templin JS, Wang AQ, Xu X, Southall N, Klubo-Gwiezdzinska J, Neumann S, Marugan JJ, Gershengorn MC (2024) An Orally Efficacious Thyrotropin Receptor Ligand Inhibits Growth and Metastatic Activity of Thyroid Cancers. J Clin Endocrinol Metab 109(9): 2306–2316. http://doi.org/10.1210/clinem/dgae114
  84. Worden F (2014) Treatment strategies for radioactive iodine-refractory differentiated thyroid cancer. Ther Adv Med Oncol 6(6): 267–279. http://doi.org/10.1177/1758834014548188
  85. Zou Y, Li B, Wang X, Mao J, Zhang Y (2022) The risk between thyrotropin suppression and bone mineral density in differentiated thyroid cancer. Medicine (Baltimore) 101(48): e31991. http://doi.org/10.1097/MD.0000000000031991
  86. Dziedzic M, Bonczar M, Ostrowski P, Stachera B, Plutecki D, Buziak-Bereza M, HubalewskaDydejczyk A, Walocha J, Koziej M (2024) Association between serum TSH concentration and bone mineral density: an umbrella review. Hormones (Athens) 23(3): 547–565. http://doi.org/10.1007/s42000-024-00555-w
  87. Boutin A, Neumann S, Gershengorn MC (2016) Multiple Transduction Pathways Mediate Thyrotropin Receptor Signaling in Preosteoblast-Like Cells. Endocrinology 157(5): 2173–2181. http://doi.org/10.1210/en.2015-2040
  88. Mezei M, Latif R, Das B, Davies TF (2021) Implications of an Improved Model of the TSH Receptor Transmembrane Domain (TSHR-TMD-TRIO). Endocrinology 162(7): bqab051. http://doi.org/10.1210/endocr/bqab051
  89. Neumann S, Eliseeva E, Boutin A, Barnaeva E, Ferrer M, Southall N, Kim D, Hu X, Morgan SJ, Marugan JJ, Gershengorn MC (2018) Discovery of a Positive Allosteric Modulator of the Thyrotropin Receptor: Potentiation of Thyrotropin-Mediated Preosteoblast Differentiation In Vitro. J Pharmacol Exp Ther 364(1): 38–45. http://doi.org/10.1124/jpet.117.244095
  90. Derkach KV, Didenko EA, Sorokoumov VN, Shpakov AO (2025) Substitution of an Ethyl Group with a Methyl Group in the Variable Moiety of TPY3m, a Thyroid-Stimulating Hormone Receptor Agonist, Modifies the Effect of This Analogue on the Basal and Thyroliberin-Stimulated Levels of Thyroid Hormones in Rats. Cell Tissue Biol 19(2): 102–112. http://doi.org/10.1134/S1990519X24600716
  91. Derkach KV, Pechalnova AS, Nazarov IR, Didenko EA, Sorokoumov VN, Shpakov AO (2025) Development of Thieno[2,3-d]-pyrimidine-based Positive Allosteric Modulators of Thyroid Stimulating Hormone Receptor and their Effect on Thyroid Status in Rats. J Evol Biochem Physiol 61(2): 425–437. https://doi.org/10.1134/S002209302502005X
  92. Nagayama Y, Nishihara E (2022) Thyrotropin receptor antagonists and inverse agonists, and their potential application to thyroid diseases. Endocr J 69(11): 1285–1293. http://doi.org/10.1507/endocrj.EJ22-0391
  93. Barbesino G, Salvi M, Freitag SK (2022) Future Projections in Thyroid Eye Disease. J Clin Endocrinol Metab 107(Suppl_1): S47–S56. http://doi.org/10.1210/clinem/dgac252
  94. Turcu AF, Kumar S, Neumann S, Coenen M, Iyer S, Chiriboga P, Gershengorn MC, Bahn RS (2013) A small molecule antagonist inhibits thyrotropin receptor antibody-induced orbital fibroblast functions involved in the pathogenesis of Graves ophthalmopathy. J Clin Endocrinol Metab 98(5): 2153–2159. http://doi.org/10.1210/jc.2013-1149
  95. Neumann S, Nir EA, Eliseeva E, Huang W, Marugan J, Xiao J, Dulcey AE, Gershengorn MC (2014) A selective TSH receptor antagonist inhibits stimulation of thyroid function in female mice. Endocrinology 155(1): 310–314. http://doi.org/10.1210/en.2013-1835
  96. Marcinkowski P, Hoyer I, Specker E, Furkert J, Rutz C, Neuenschwander M, Sobottka S, Sun H, Nazare M, Berchner-Pfannschmidt U, von Kries JP, Eckstein A, Schülein R, Krause G (2019) A New Highly Thyrotropin Receptor-Selective Small-Molecule Antagonist with Potential for the Treatment of Graves' Orbitopathy. Thyroid 29(1): 111–123. http://doi.org/10.1089/thy.2018.0349
  97. Derkach KV, Bakhtyukov AA, Sorokoumov VN, Shpakov AO (2020) New Thieno-[2,3-d]pyrimidineBased Functional Antagonist for the Receptor of Thyroid Stimulating Hormone. Dokl Biochem Biophys 491(1): 77–80. http://doi.org/10.1134/S1607672920020064
  98. Derkach KV, Fokina EA, Bakhtyukov AA, Sorokoumov VN, Stepochkina AM, Zakharova IO, Shpakov AO (2022) The Study of Biological Activity of a New Thieno[2,3-D]-Pyrimidine-Based Neutral Antagonist of Thyrotropin Receptor. Bull Exp Biol Med 172(6): 713–717. http://doi.org/10.1007/s10517-022-05462-x
  99. Neumann S, Huang W, Eliseeva E, Titus S, Thomas CJ, Gershengorn MC (2010) A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. Endocrinology 151(7): 3454–3459. http://doi.org/10.1210/en.2010-0199
  100. Neumann S, Eliseeva E, McCoy JG, Napolitano G, Giuliani C, Monaco F, Huang W, Gershengorn MC (2011) A new small-molecule antagonist inhibits Graves' disease antibody activation of the TSH receptor. J Clin Endocrinol Metab 96(2): 548–554. http://doi.org/10.1210/jc.2010-1935
  101. Derkach KV, Bakhtyukov AA, Sorokoumov VN, Lebedev IA, Didenko EA, Shpakov AO (2024) Low Molecular Weight Thyrotropin Receptor Inverse Agonist is Active upon both Intraperitoneal and Oral Administration. J Evol Biochem Physiol 60(1): 295–305. https://doi.org/10.1134/S0022093024010216
  102. Derkach KV, Didenko EA, Sorokoumov VN, Zakharova IO, Shpakov AO (2025) Low-molecularweight Ligand of the Thyroid-stimulating Hormone Receptor with the Activity of a Partial Agonist and a Negative Allosteric Modulator. Dokl Biochem Biophys 520(1): 53–57. http://doi.org/10.1134/S1607672924600799
  103. Derkach KV, Shpakova EA, Didenko EA, Sorokoumov VN, Shpakov AO (2025) The Effect of Various Types of Allosteric Regulators on Basal and Hormone-Stimulated Thyrotropin Receptor Activity In Vitro and In Vivo. Rev Clin Pharm Drug Ther 23(1): 41–50 https://doi.org/10.17816/RCF635741
  104. Zarzycka B, Zaidi SA, Roth BL, Katritch V (2019) Harnessing Ion-Binding Sites for GPCR Pharmacology. Pharmacol Rev 71(4): 571–595. http://doi.org/10.1124/pr.119.017863
  105. Wang Y, Yu Z, Xiao W, Lu S, Zhang J (2021) Allosteric binding sites at the receptor-lipid bilayer interface: novel targets for GPCR drug discovery. Drug Discov Today 26(3): 690–703. http://doi.org/10.1016/j.drudis.2020.12.001
  106. Persechino M, Hedderich JB, Kolb P, Hilger D (2022) Allosteric modulation of GPCRs: From structural insights to in silico drug discovery. Pharmacol Ther 237: 108242. http://doi.org/10.1016/j.pharmthera.2022.108242
  107. Shpakov AO (2023) Allosteric sites and allosteric regulators of G protein-coupled receptors – gray cardinals of signal transduction. J Evol Biochem Physiol 59(Suppl 1): S1–S106. http://doi.org/10.1134/S0022093023070013
  108. Roth BL, Krumm BE (2024) Molecular glues as potential GPCR therapeutics. Biochem Pharmacol 228: 116402. http://doi.org/10.1016/j.bcp.2024.116402
  109. Conflitti P, Lyman E, Sansom MSP, Hildebrand PW, Gutiérrez-de-Terán H, Carloni P, Ansell TB, Yuan S, Barth P, Robinson AS, Tate CG, Gloriam D, Grzesiek S, Eddy MT, Prosser S, Limongelli V (2025) Functional dynamics of G protein-coupled receptors reveal new routes for drug discovery. Nat Rev Drug Discov 24(4): 251–275. http://doi.org/10.1038/s41573-024-01083-3

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».