Pathogenetic and clinical aspects of osteoarthritis and osteoarthritis-associated defects of the cartilage of the knee joint from the standpoint of understanding the role of the subchondral bone

Cover Page

Cite item

Abstract

The article presents an analytical review on modern ideas about the osteoarthritis pathogenesis based on the findings regarding the subchondral bone and its importance in the development of this disease. It is shown that the data of numerous studies in recent years reveal more and more evidence demonstrating the primacy of pathological changes in the subchondral bone in the development of osteoarthritis and its progression. The vast majority of scientific papers confirm the fact that hyaline cartilage and subchondral bone tissue are a single morphofunctional biocomposite with an interdependent system of biochemical connections and molecular signaling, as well as correlative reactions to stressful mechanical loads. The authors analyzed in detail the mechanisms of cellular and molecular interaction in the system "hyaline cartilage — subchondral bone" in the development of osteoarthritis, vividly demonstrating the active and priority involvement of subchondral bone tissue in the debut and maintenance of the destructive-dystrophic process. The necessity to leave the chondrocentric model of osteoarthritis pathogenesis and the expediency to revise the points of application of therapeutic measures in patients with knee joint osteoarthritis are discussed. The current methods of surgical treatment of knee joint osteoarthritis are critically reviewed from the perspective of their pathogenetic orientation. The authors discuss the relevance in developing the concept of organ-preserving surgery in destructive-dystrophic joint lesions, which should be based on the findings describing the role and significance of subchondral and metaphyseal bone tissue in the above pathologic processes.

About the authors

Gennadiy P. Kotelnikov

Samara State Medical University

Email: g.p.kotelnikov@samsmu.ru
ORCID iD: 0000-0001-7456-6160
SPIN-code: 9910-1130

MD, Dr. Sci. (Med.), Academician of the Russian Аcademy of Sciences, Professor

Russian Federation, Samara

Yuriy V. Lartsev

Samara State Medical University

Email: lartcev@mail.ru
ORCID iD: 0000-0003-4450-2486
SPIN-code: 7407-4693

MD, Dr. Sci. (Med.), Professor

Russian Federation, Samara

Dmitry S. Kudashev

Samara State Medical University

Author for correspondence.
Email: dmitrykudashew@mail.ru
ORCID iD: 0000-0001-8002-7294
SPIN-code: 4180-6470

MD, Cand. Sci. (Med.), Associate Professor

Russian Federation, Samara

Sergey D. Zuev-Ratnikov

Samara State Medical University

Email: stenocardia@mail.ru
ORCID iD: 0000-0001-6471-123X
SPIN-code: 7415-8060

MD, Cand. Sci. (Med.), Associate Professor

Russian Federation, Samara

Vardan G. Asatryan

Samara State Medical University

Email: vandamsmail@gmail.com
ORCID iD: 0009-0009-1751-700X
SPIN-code: 7496-3860
Russian Federation, Samara

Nikita D. Shcherbatov

Samara State Medical University

Email: niksherbatov@mail.ru
ORCID iD: 0009-0007-7202-7471
SPIN-code: 4243-9081
Russian Federation, Samara

References

  1. Alekseeva LI, Taskina EA, Kashevarova NG. Osteoarthritis: epidemiology, classification, risk factors, and progression, clinical presentation, diagnosis, and treatment. Modern Rheumatology Journal. 2019;13(2):9–21. (In Russ). doi: 10.14412/1996-7012-2019-2-9-21
  2. Kabalyk MA. Biomarkers of subchondral bone remodeling in osteoarthritis. Pacific Medical Journal. 2017;(1):37–41. (In Russ). doi: 10.17238/PmJ1609-1175.2017.1.37-41
  3. Alan B. The Bone Cartilage Interface and Osteoarthritis. Calcified Tissue International. 2021;109(3):303–328. doi: 10.1007/s00223-021-00866-9
  4. Ashish RS, Supriya J, Sang-Soo L, Ju-Suk N. Interplay between Cartilage and Subchondral Bone Contributing to Pathogenesis of Osteoarthritis. Int J Mol Sci. 2013;14(10):19805–19830. doi: 10.3390/ijms141019805
  5. Loef M, van Beest S, Kroon FPB, et al. Comparison of histological and morphometrical changes underlying subchondral bone abnormalities in inflammatory and degenerative musculoskeletal disorders: a systematic review. Osteoarthritis Cartilage. 2018;26(8):992–1002. doi: 10.1016/j.joca.2018.05.007
  6. Goldring SR, Goldring MB. Changes in the osteochondral unit during osteoarthritis: structure, function, and cartilage-bone crosstalk. Nat Rev Rheumatol. 2016;12(11):632–44. doi: 10.1038/nrrheum.2016.148
  7. Boyde A, Davis GR, Mills D, et al. On fragmenting, densely mineralized acellular protrusions into articular cartilage and their possible role in osteoarthritis. J Anat. 2014;225(4):436–446. doi: 10.1111/joa.12226
  8. Alexeeva LI, Zaitseva EM. Role of subchondral bone in osteoarthritis. Rheumatology Science and Practice. 2009;47(4):41–48. (In Russ). doi: 10.14412/1995-4484-2009-1149
  9. Roy KA, Jennifer R, Jonathan PD. Contribution of Circulatory Disturbances in Subchondral Bone to the Pathophysiology of Osteoarthritis. Curr Rheumatol Rep. 2017;19(8):49. doi: 10.1007/s11926-017-0660-x
  10. Kuttapitiya A, Assi L, Laing K, et al. Microarray analysis of bone marrow lesions in osteoarthritis demonstrates upregulation of genes implicated in osteochondral turnover, neurogenesis and inflammation. Ann Rheum Dis. 2017;76(10):1764–1773. doi: 10.1136/annrheumdis-2017-211396
  11. Butterfield NC, Curry KF, Steinberg J, et al. Accelerating functional gene discovery in osteoarthritis. Nat Commun. 2021;12(1):467. doi: 10.1038/s41467-020-20761-5
  12. Zhen G, Wen C, Jia X, et al. Inhibition of TGF-beta signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat Med. 2013;19(6):704–12. doi: 10.1038/nm.3143
  13. Li G, Zheng Q, Landao-Bassonga E, Cheng TS, et al. Influence of age and gender on microarchitecture and bone remodeling in subchondral bone of the osteoarthritic femoral head. Bone. 2015;(77):91–7. doi: 10.1016/j.bone.2015.04.019
  14. Egiazaryan KA, Lazishvili GD, Hramenkova IV, et al. Knee osteochondritis dissecans: surgery algorithm. Vestnik RGMU. 2018;(2):77–83. (In Russ). doi: 10.24075/brsmu.2018.020

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).