Conservative treatment of chronic nonbacterial osteomyelitis using zoledronic acid in children

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Currently, there is no etiological treatment for chronic nonbacterial osteomyelitis. The insufficient efficacy of all available treatment modalities remains a major concern. Among the most effective approaches are genetically engineered therapy and bisphosphonate treatment. Pamidronate is the most frequently reported option in scientific publications. However, given pamidronates’ lower efficacy compared to zoledronic acid, we developed a treatment protocol that includes zoledronic acid at a dose of 0.05 mg/kg every 3 months, three infusions in total, along with active vitamin D metabolites and calcium carbonate.

AIM: This study aimed to demonstrate the efficacy of zoledronic acid in the treatment of chronic nonbacterial osteomyelitis.

METHODS: The study included 22 children aged 6 to 17 years. A prospective pilot study was conducted to assess the efficacy of zoledronic acid in children with chronic recurrent multifocal osteomyelitis. All patients underwent biopsy with morphological and microbiological verification of the diagnosis, as well as laboratory and imaging assessments before and 3, 6, and 12 months after treatment. Clinical disease activity was assessed using a visual analog scale for pain and the PedsQL 4.0 quality of life questionnaire.

RESULTS: Preliminary treatment outcomes in patients receiving this regimen are promising. Pain was significantly reduced, quality of life improved, and the number of bone lesions decreased, with clinical remission achieved in all patients.

CONCLUSION: Zoledronic acid rapidly inhibits osteoclast activity, leading to both clinical and radiological remission, as evidenced by decreased pain, reduction of bone marrow edema on MRI, and sclerosis of lytic lesions. Given the reduced osteoclast activity in the post-injection period, this therapy must be combined with active vitamin D metabolites and calcium carbonate to maintain calcium-phosphorus homeostasis.

About the authors

Gazinur N. Tairov

Priorov National Medical Research Centre for Traumatology and Orthopaedics

Author for correspondence.
Email: gazinur.vezunchik@mail.ru
ORCID iD: 0009-0002-3469-3944
SPIN-code: 8868-2577

MD

Russian Federation, 10 Priorova st, Moscow, 127299

Anton G. Nazarenko

Priorov National Medical Research Centre for Traumatology and Orthopaedics

Email: nazarenkoag@cito-priorov.ru
ORCID iD: 0000-0003-1314-2887
SPIN-code: 1402-5186

Corresponding Member of the Russian Academy of Sciences, MD, Dr. Sci. (Medicine), Professor of RAS

Russian Federation, 10 Priorova st, Moscow, 127299

Alexander A. Ochkurenko

Priorov National Medical Research Centre for Traumatology and Orthopaedics

Email: cito-omo@mail.ru
ORCID iD: 0000-0002-1078-9725
SPIN-code: 8324-2383

MD, Dr. Sci. (Medicine), Professor

Russian Federation, 10 Priorova st, Moscow, 127299

Alexander A. Kuleshov

Priorov National Medical Research Centre for Traumatology and Orthopaedics

Email: cito-spine@mail.ru
ORCID iD: 0000-0002-9526-8274
SPIN-code: 7052-0220

MD, Dr. Sci. (Medicine)

Russian Federation, 10 Priorova st, Moscow, 127299

Marchel S. Vetrile

Priorov National Medical Research Centre for Traumatology and Orthopaedics

Email: vetrilams@cito-priorov.ru
ORCID iD: 0000-0001-6689-5220
SPIN-code: 9690-5117

MD, Cand. Sci. (Medicine)

Russian Federation, 10 Priorova st, Moscow, 127299

Igor N. Lisyansky

Priorov National Medical Research Centre for Traumatology and Orthopaedics

Email: lisigornik@list.ru
ORCID iD: 0000-0002-2479-4381
SPIN-code: 9845-1251

MD, Cand. Sci. (Medicine)

Russian Federation, 10 Priorova st, Moscow, 127299

Sergey N. Makarov

Priorov National Medical Research Centre for Traumatology and Orthopaedics

Email: moscow.makarov@gmail.com
ORCID iD: 0000-0003-0406-1997
SPIN-code: 2767-2429

MD, Cand. Sci. (Medicine)

Russian Federation, 10 Priorova st, Moscow, 127299

Uliya V. Strunina

Burdenko National Medical Research Centre for Neurosurgery

Email: ustrunina@nsi.ru
ORCID iD: 0000-0001-5010-6661
SPIN-code: 9799-5066

MD

Russian Federation, Moscow

References

  1. Zhao DY, McCann L, Hahn G, Hedrich CM. Chronic nonbacterial osteomyelitis (CNO) and chronic recurrent multifocal osteomyelitis (CRMO). J Transl Autoimmun. 2021;4:100095. doi: 10.1016/j.jtauto.2021.100095
  2. Young S, Sharma N, Lee JH, et al. Mast cells enhance sterile inflammation in chronic nonbacterial osteomyelitis. Dis Model Mech. 2019;12(8):dmm040097. doi: 10.1242/dmm.040097
  3. Hofmann SR, Kapplusch F, Mäbert K, Hedrich CM. The molecular pathophysiology of chronic non-bacterial osteomyelitis (CNO) — a systematic review. Mol Cell Pediatr. 2017;4(1):7. doi: 10.1186/s40348-017-0073-y
  4. Hedrich CM, Morbach H, Reiser C, Girschick HJ. New Insights into Adult and Paediatric Chronic Non-bacterial Osteomyelitis CNO. Curr Rheumatol Rep. 2020;22(9):1–11. doi: 10.1007/s11926-020-00928-1
  5. Kostik MM, Kopchak OL, Chikova IA, et al. Differentiated approach to non-bacterial osteomyelitis treatment in children: The retrospective study results. Vopr Sovrem Pediatr. 2016;15(5):505–512. doi: 10.15690/vsp.v15i5.1625 EDN: WZKNDB
  6. Wipff J, Costantino F, Lemelle I, et al. A large national cohort of French patients with chronic recurrent multifocal osteitis. Arthritis Rheumatol. 2015;67(4):1128–37. doi: 10.1002/art.39013
  7. Borzutzky A, Stern S, Reiff A, et al. Pediatric chronic nonbacterial osteomyelitis. Pediatrics. 2012;130(5):e1190–7. doi: 10.1542/peds.2011-3788
  8. Schnabel A, Range U, Hahn G, Berner R, Hedrich CM. Treatment response and longterm outcomes in children with chronic nonbacterial osteomyelitis. J Rheumatol. 2017;44(7):1058–1065. doi: 10.3899/jrheum.161255
  9. Girschick H, Finetti M, Orlando F, et al. The multifaceted presentation of chronic recurrent multifocal osteomyelitis: A series of 486 cases from the Eurofever international registry. Rheumatology (Oxford). 2018;57(7):1203–1211. doi: 10.1093/rheumatology/key058
  10. Kostik MM, Kopchak OL, Chikova IA, Isupova EA, Mushkin AY. Comparison of different treatment approaches of pediatric chronic non-bacterial osteomyelitis. Rheumatol Int. 2019;39(1):89–96. doi: 10.1007/s00296-018-4151-9
  11. Just A, Adams S, Brinkmeier T, et al. Successful treatment of primary chronic osteomyelitis in SAPHO syndrome with bisphosphonates. J Dtsch Dermatol Ges. 2008;6(8):657–60. (in German). doi: 10.1111/j.1610-0387.2008.06588.x
  12. Tairov GN, Toptygina AP, Ochkurenko AA, Buklemishev YV, Karpov IN. Experience of successful treatment of a patient with chronic non-bacterial osteomyelitis (clinical case). N.N. Priorov J Traumatol Orthop. 2022;29(4):335–343. doi: 10.17816/vto111823 EDN: CCJWJO
  13. Kellinsalmi M, Mönkkönen H, Mönkkönen J, et al. In vitro comparison of clodronate, pamidronate and zoledronic acid effects on rat osteoclasts and human stem cell-derived osteoblasts. Basic Clin Pharmacol Toxicol. 2005;97(6):382–91. doi: 10.1111/j.1742-7843.2005.pto_176.x
  14. Jansson A, Renner ED, Ramser J, et al. Classification of non-bacterial osteitis: Retrospective study of clinical, immunological and genetic aspects in 89 patients. Rheumatology (Oxford). 2007;46(1):154–60. doi: 10.1093/rheumatology/kel190
  15. Belova NА, Kostik MM, Buklaev DS, et al. Federal’nye klinicheskie rekomendatsii (protokol) po okazaniyu meditsinskoj pomoshhi patsientam s nesovershennym osteogenezom. Moscow; 2015. Available at: http://мороздгкб.рф/wp-content/uploads/2017/03/Федеральные-клинические-рекомендации-протокол-по-оказанию-медицинской-помощи-пациентам-с-несовершенным-остеогенезом.pdf. (In Russ.).
  16. Li C, Zhao Y, Zuo Y, et al. Efficacy of bisphosphonates in patients with synovitis, acne, pustulosis, hyperostosis, and osteitis syndrome: a prospective open study. Clin Exp Rheumatol. 2019;37(4):663–669.
  17. Hospach T, Langendoerfer M, Von Kalle T, Maier J, Dannecker GE. Spinal involvement in chronic recurrent multifocal osteomyelitis (CRMO) in childhood and effect of pamidronate. Eur J Pediatr. 2010;169(9):1105–11. doi: 10.1007/s00431-010-1188-5
  18. Khanna G, Sato TSP, Ferguson P. Imaging of chronic recurrent Multifocal Osteomyelitis. Radiographics. 2009;29(4):1159–77. doi: 10.1148/rg.294085244
  19. Zhao Y, Wu EY, Oliver MS, et al. Consensus Treatment Plans for Chronic Nonbacterial Osteomyelitis Refractory to Nonsteroidal Antiinflammatory Drugs and/or With Active Spinal Lesions. Arthritis Care Res (Hoboken). 2018;70(8):1228–1237. doi: 10.1002/acr.23462
  20. Petukhova V, Mushkin A, Kostik M. Bisphosphonate treatment in the bone disorders in children: a systematic review. MedAlliance. 2021;9(3):59–70. doi: 10.36422/23076348-2021-9-3-59-70 EDN: JSMWWT

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Distribution of bone lesions in children with chronic nonbacterial osteomyelitis.

Download (176KB)
3. Fig. 2. Temporal trends in clinical pain assessment using a visual analog scale (a), number of lesions on whole-body STIR MRI (b), and quality of life according to the PedsQL questionnaire (c) 3, 6, and 12 months after therapy initiation .

Download (253KB)
4. Fig. 3. Regression of bone marrow edema on whole-body STIR MRI before treatment and 6 months after therapy initiation. In the L2 vertebral body: a, before treatment, a-1, after treatment; in the tibia: b, before treatment, b-1, after treatment; in the distal femur and proximal tibia: c, before treatment, c-1, after treatment; in the distal fibula: d, before treatment, d-1, after treatment; in the foot bones and distal tibia: e, before treatment, e-1, after treatment.

Download (186KB)
5. Fig. 4. Sclerosis of a lytic lesion in the L2 vertebral body 3 months after therapy initiation.

Download (268KB)
6. Fig. 5. Partial restoration of vertebral body shape on 3D CT 6 months after therapy initiation.

Download (238KB)

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).