Разработка программных средств математического имитационного моделирования на основе клинических данных и фантомных исследований для оценки перфузии головного мозга и повышения качества изображений при ОФЭКТ/КТ с 99mTc-ГМПАО
- Авторы: Денисова Н.В.1,2, Нестерова А.В.1,2, Минин С.М.3, Анашбаев Ж.Ж.3, Красильников С.Э.3, Усов В.Ю.3
-
Учреждения:
- Национальный исследовательский Новосибирский государственный университет
- Институт теоретической и прикладной механики им. С.А. Христиановича СО РАН
- НМИЦ им. академика Е.Н. Мешалкина Минздрава России
- Выпуск: Том 68, № 6 (2023)
- Страницы: 106-117
- Раздел: Ядерная медицина
- URL: https://medbiosci.ru/1024-6177/article/view/363873
- DOI: https://doi.org/10.33266/1024-6177-2023-68-6-106-117
- ID: 363873
Цитировать
Полный текст
Аннотация
Цель: Разработка программного комплекса «Виртуальное обследование перфузии головного мозга методом ОФЭКТ/КТ с 99mTc-ГМПАО (Теоксимом)» и его практическое применение для изучения условий достижения наилучшего качества изображений при клинических исследованиях пациентов.
Материал и методы: Исследования были выполнены с использованием клинических данных и метода имитационного компьютерного моделирования. Клинические данные однофотонной эмиссионной компьютерной томографии, совмещённой с рентгеновской компьютерной томографией (ОФЭКТ/КТ) с 99mTc-гексаметилпропиленаминоксимом (99mTc-Теоксимом, пр-ва ООО «ДИАМЕД») пациента с перенесенным ишемическим инсультом коры правой лобной доли были получены на двухдетекторном сканере GE Discovery NM/CT 670 DR (США) с использованием высокоразрешающих низкоэнергетических коллиматоров (LEHR). Измеренные данные были обработаны с помощью специализированного программного обеспечения Q.Brain и Q.Volumetrix MI на рабочей станции Xeleris 4.0 DR (GE Healthcare, США) для получения реконструированных аксиальных томографических срезов. Для проведения имитационного компьютерного моделирования процедуры обследования перфузии ГМ методом ОФЭКТ/КТ разработан программный комплекс, который включает математический фантом Хоффмана с возможностью моделирования клинических случаев гипоперфузии разной локализации и размера («виртуальный пациент»), моделирование сбора «сырых» проекционных данных и программу реконструкции изображений на основе алгоритма OSEM (Ordered Subset Expectation Maximization). Важным преимуществом метода математического моделирования является возможность оценки качества реконструированного изображения с помощью расчета среднеквадратичной погрешности при сравнении с заданным фантомом. В численных экспериментах исследовалась зависимость погрешности реконструкции от параметров алгоритма OSEM (от количества подгрупп – subsets, и от числа итераций) с целью определения условий достижения наилучшего качества изображений. Был разработан и протестирован статистический критерий останова.
Результаты: Разработан и протестирован программный комплекс, который позволяет исследовать ошибки алгоритма реконструкции, что представляет большую трудность при использовании клинических методов исследования. Предложен критерий останова итераций при применении алгоритма реконструкции OSEM – минимизации функционала отклонения функции хи-квадрат от целевого значения, при этом пикселы детектора с ненулевыми значениями объединены в блоки по схеме 2×2.
Наблюдается достоверная хорошая корреляция между предложенным критерием останова и минимумом среднеквадратичной погрешности реконструкции изображения. Это позволяет вввести этот критерий в клиническую практику применения вычислительных средств реконструкции срезов ОФЭКТ для получения наилучшего изображения.
Результаты имитационного моделирования продемонстрировали возможность сокращения времени накопления «сырых» данных, в течение которого пациент должен оставаться неподвижным, как минимум, в два раза.
Заключение: Развитый в данной работе метод компьютерного имитационного моделирования является практически полезной технологией, которая способствует оптимизации использования ОФЭКТ для достижения наилучших возможных результатов визуализации головного мозга у пациентов.
Об авторах
Н. В. Денисова
Национальный исследовательский Новосибирский государственный университет; Институт теоретической и прикладной механики им. С.А. Христиановича СО РАН
Email: nvdenisova2011@mail.ru
Новосибирск
А. В. Нестерова
Национальный исследовательский Новосибирский государственный университет; Институт теоретической и прикладной механики им. С.А. Христиановича СО РАН
Email: nvdenisova2011@mail.ru
Новосибирск
С. М. Минин
НМИЦ им. академика Е.Н. Мешалкина Минздрава России
Email: nvdenisova2011@mail.ru
Новосибирск
Ж. Ж. Анашбаев
НМИЦ им. академика Е.Н. Мешалкина Минздрава России
Email: nvdenisova2011@mail.ru
Новосибирск
С. Э. Красильников
НМИЦ им. академика Е.Н. Мешалкина Минздрава России
Email: nvdenisova2011@mail.ru
Новосибирск
В. Ю. Усов
НМИЦ им. академика Е.Н. Мешалкина Минздрава России
Email: nvdenisova2011@mail.ru
Новосибирск
Список литературы
- Juni J.E., Waxman A.D., Devous M.D., Tikofsky R.S., Ichise M., Van Heertum R.L., Carretta R.F., Chen C.C. Society for Nuclear Medicine Procedure Guideline for Brain Perfusion SPECT Using99mTc Radiopharmaceuticals 3.0 // J. Nucl. Med. Technol. 2009. V.37, No. 3. P. 191-195.
- Kapucu O.L., Nobili F., Varrone A., Booij J., Vander Borght T., Någren K., Darcourt J., Tatsch K., Van Laere K.J. EANM Procedure Guideline for Brain Perfusion SPECT Using 99mTc-Labelled Radiopharmaceuticals, Version 2 // Eur. J. Nucl. Med. Mol. Imaging. 2009. V.36, No. 12. P. 2093-2102. doi: 10.1007/s00259-009-1266-y.
- Abadi E., Segars W.P., Tsui B.M.W., Kinahan P.E., Bottenus N., Frangi A.F., Maidment A., Lo J., Samei E. Virtual Clinical Trials in Medical Imaging: a Review // J. Med. Imaging. (Bellingham). 2020. V.7, No. 4. P. 042805. doi: 10.1117/1.JMI.7.4.042805.
- Hoffman 3D Brain Phantom Model BR/3D/P, DATA SPECTRUM Corporation, USA.
- Shepp L.A., Vardi Y. Maximum Likelihood Reconstruction for Emission Tomography // IEEE Trans. Med. Imaging. 1982. V.1, No. 2. P. 113–122. doi: 10.1109/TMI.1982.4307558.
- Veklerov E., Llacer J. Stopping Rule for the MLE Algorithm Based on Statistical Hypothesis Testing // IEEE Trans. Med. Imaging. 1987. V.6, No. 4. P. 313-319. doi: 10.1109/TMI.1987.4307849.
- Нестерова А.В., Денисова Н.В. “Подводные камни“ на пути количественной оценки тяжести онкологических поражений в диагностической ядерной медицине // Журнал технической физики. 2022. Т.92, № 7. С. 1018–1021. doi: 10.21883/JTF.2022.07.52659.331-21.
- Денисова Н.В., Терехов И.Н. Компьютерное моделирование процедуры ОФЭКТ/КТ в кардиологии // Медицинская физика. 2016. № 3. С. 87-100.
- Доля О.П., Клепов А.Н., Кураченко Ю.А., Матусевич Е.С. Моделирование методом Монте-Карло функции чувствительности коллиматора гамма-камеры к гамма-излучению остеотропного радиофармпрепарата // Медицинская физика. 2008. № 2. С. 63-75.
- Костылев В.А., Калашников С.Д., Фишман Л.Я. Эмиссионная гамма-топография. М.: Энергоатомиздат, 1988. 327 С.
- Костылев В.А. О развитии и внедрении медицинских ядерно-физических технологий в России // Медицинская физика. 2007. № 2. С. 5-17.
- Наркевич Б.Я., Крылов А.С., Рыжков А.Д., Гелиашвили Т.М. Дозиметрическое сопровождение радионуклидной терапии // Онкологический журнал: лучевая диагностика, лучевая терапия. 2023. Т.6, № 2. С. 66-84. doi: 10.37174/2587-7593-2023-6-2-66-84.
- Lee W.W., K-SPECT Group. Clinical Applications of Technetium-99m Quantitative Single-Photon Emission Computed Tomography/Computed Tomography. Nucl. Med. Mol. Imaging. 2019;53;3:172-181. doi: 10.1007/s13139-019-00588-9.
- Képes Z., Mikó M., Kukuts K., Esze R., Barna S., Somodi S., Káplár M., Varga J., Garai I. Imaging with [99mTc]HMPAO - a Novel Perspective: Investigation of [99mTc]HMPAO Leg Muscle Uptake in Metabolic Diseases. Acta Radiol. 2023;64;1:187-194. doi: 10.1177/02841851211063601.
Дополнительные файлы

