Comparative Assessment of the Absorbed Doses Resulted from Occupational Exposure and Computed Tomography
- Авторлар: Osipov M.V.1, Ria F.2, Druzhinina P.S.3, Sokolnikov M.E.1
-
Мекемелер:
- Southern Urals Biophysics Institute
- Duke University
- P.V. Ramzaev Saint Petersburg Research Institute of Radiation Hygiene
- Шығарылым: Том 68, № 1 (2023)
- Беттер: 48-57
- Бөлім: Radiation Epidemiology
- URL: https://medbiosci.ru/1024-6177/article/view/363809
- DOI: https://doi.org/10.33266/1024-6177-2023-68-1-48-57
- ID: 363809
Дәйексөз келтіру
Толық мәтін
Аннотация
A comparative assessment of the absorbed doses resulted from computed tomography (CT) examinations, and the dose resulted from occupational external gamma exposure of the “Mayak” workers was carried out. The patients’ diagnostic radiation dose was reconstructed using Monte-Carlo simulation on a population of 58 virtual adult phantoms across 13 CT protocol categories. Archival records of CT examinations of patients were used for the dose reconstruction. Information on technical parameters of scanning was extracted from DICOM files. The study sample has been linked to the Mayak worker register database to identify persons who had professional contact with ionizing radiation. Annual occupational dose records for the Mayak workers were obtained from the Dose-2013 dosimetry system.
In this study, information on 212 patients was collected from 303 records. Among them, 42 Mayak employees were identified, including 24 persons who had non-zero dose of external gamma radiation, and 16 persons with internal alpha radiation dose due to occupational intake of 239Pu. Individual doses absorbed in the organs resulted from exposure to computed tomography and occupational activities has been compared.
The results showed significant variability of the absorbed organ dose depending on the area of CT examination. The brain and lens were subjected to the highest radiation exposure during head CT. The average absorbed dose in brain was 24.5 mGy per single examination (the maximum brain dose accumulated over the entire study period was 82.3 mGy), and 27.7 mGy for the lens of the eye (the maximum lens dose reached 92.9 mGy).
Relevant comparison of the absorbed dose of diagnostic and occupational exposure, accumulated during one year, has been performed. The average estimate of cumulative radiation dose absorbed in the organs during computed tomography was an order of magnitude lower than the one from occupational external gamma exposure of Mayak personnel, except brain dose. Annual CT dose equivalent of external gamma radiation was 2.82.
Негізгі сөздер
Авторлар туралы
M. Osipov
Southern Urals Biophysics Institute
Email: osipov@subi.su
Ozyorsk, Russia
F. Ria
Duke University
Email: osipov@subi.su
North Caroline, Durham, US
P. Druzhinina
P.V. Ramzaev Saint Petersburg Research Institute of Radiation Hygiene
Email: osipov@subi.su
Saint Petersburg, Russia
M. Sokolnikov
Southern Urals Biophysics Institute
Email: osipov@subi.su
Ozyorsk, Russia
Әдебиет тізімі
- Recommendations of the International Commission on Radiological Protection. ICRP Publication 102. Managing Patient Dose in Multi-Detector Computed Tomography (MDCT) // Ann. ICRP. 2007. V.37, No. 1. P. 1-79.
- Барковский А.Н., Братилова А.А., Кормановская Т.А., Ахматдинов Р.Р. Динамика доз облучения населения Российской Федерации за период с 2003 по 2018 г. // Радиационная гигиена. 2020. Т.12, № 4. С. 96-122.
- Дружинина П.С., Чипига Л.А., Рыжов С.А., Водоватов А.В., Беркович Г.В., Смирнов А.В., Ярына Д.В., Ермолина Е.П., Дружинина Ю.В. Современные подходы к обеспечению качества диагностики в компьютерной томографии // Радиационная гигиена. 2021. Т.14, № 1. С. 17-33. https://doi.org/10.21514/1998-426X-2021-14-1-17-33.
- Заполнение форм федерального государственного статистического наблюдения № 3-ДОЗ: Методические рекомендации по обеспечению радиационной безопасности. Утверждены Федеральной службой по надзору в сфере защиты прав потребителей и благополучия человека 16.02.2007 г. № 0100/1659-07-26.
- Rȕhm W., Harrison R.M. High CT Doses Return to the Agenda // Radiation and Environmental Biophysics. 2020;59:3-7. doi: 10.1007/s00411-019-00827-9.
- Chipiga L., Bernhardsson C. Patient Doses in Computed Tomography Examinations in Two Regions of the Russian Federation // Rad. Prot. Dosim. 2016. V.169, No. 1-4. P. 240-244.
- Brambilla M., Vassileva J., Kuchcinska A., Rehani M.M. Multinational Data on Cumulative Radiation Exposure of Patients from Recurrent Radiological Procedures: Call for Action // European Radiology. 2020. V.30, No. 5. P. 2493-2501. https://doi.org/10.1007/s00330-019-06528-7.
- National Research Council (US), Board on Radiation Effects Research. Health Risks from Exposure to Low Levels of Ionizing Radiation: BEIR VII, Phase I, Letter Report (1998). Washington: National Academies Press (US), 1998.
- National Research Council. Health Risks from Exposure to Low Levels of Ionizing Radiation: BEIR VII, Phase II. Washington: National Academies Press (US), 2006.
- Shao Yu-H., Tsai K., Kim S., Yu J., Demissie K. Exposure to Tomographic Scans and Cancer Risks // JNCI Cancer Spectrum. 2020. V.4. No. 1. P. pkz072. doi.org/10.1093/jncics/pkz072.
- Mattsson S. Need for Individual Cancer Risk Estimates in X-Ray and Nuclear Medicine Imaging // Radiation Protection Dosimetry. 2016. V.169, No. 1-4. P. 1-6. doi: 10.1093/rpd/ncw034.
- Голиков В.Ю., Водоватов А.В., Чипига Л.А., Шацкий И.Г. Оценка радиационного риска у пациентов при проведении медицинских исследований в Российской Федерации // Радиационная гигиена. 2021. Т.14, № 3. С. 56-68.
- Осипов М.В., Важенин А.В., Доможирова А.С., Чернова О.Н., Аксенова И.А. Компьютерная томография как фактор риска у онкологических пациентов при наличии профессионального облучения // Российский электронный журнал лучевой диагностики. 2019. Т.9, № 1. С. 142-147.
- Hunter N., Kuznetsova I.S., Labutina E.V., Harrison J.D. Solid Cancer Incidence other than Lung, Liver and Bone in Mayak Workers: 1948-2004 // Br. J. Cancer. 2013. V.109, No. 7. P. 1989-96. doi: 10.1038/bjc.2013.543.
- Fisher D.R., Fahey F.H. Appropriate Use of Effective Dose in Radiation Protection and Risk Assessment // Health Phys. 2017. V.113, No. 2. P. 102-109. doi: 10.1097/HP.0000000000000674.
- Осипов М.В., Шкаредных В.Ю., Логинов В.С., Мельников В.В., Дружинина П.С., Сокольников М.Э. Ретроспективный анализ онкологической заболеваемости пациентов после проведения компьютерной томографии // Радиационная гигиена. 2021. Т.14, № 3. С. 80-90. doi: 10.21514/1998-426X-2021-14-3-80-90.
- Lee C., Kim K.P., Bolch W.E., Moroz B.E., Folio L. NCICT: a Computational Solution to Estimate Organ Doses for Pediatric and Adult Patients Undergoing CT Scans // Journal of Radiological Protection. 2015. V.35, No. 4. P. 891-909. doi: 10.1088/0952-4746/35/4/891.
- Koshurnikova N.A., Shilnikova N.S., Okatenko P.V. Characteristics of the Cohort of Workers at the Mayak Nuclear Complex // Radiation Research. 1999. V.152, No. 4. P. 352-363.
- Vostrotin V., Birchall A., Zhdanov A., Puncher M., Efimov A., Napier B., et al. The Mayak Worker Dosimetry System (MWDS-2013): Internal Dosimetry Results // Radiation Protection Dosimetry. 2017. V.176, No. 1-2. P. 190-201. doi: 10.1093/rpd/ncw268.
- Vasilenko E.K., Khokhryakov V.F., Miller S.C., Fix J.J., Eckerman K., Choe D.O., et al. Mayak Worker Dosimetry Study: an Overview // Health Phys. 2007. No. 93. P. 190–206.
- Stata, Stata Statistical Software: Release 7.0, Stata Corporation. College Station, 2001.
- Birchall A., Puncher M., Harrison J., Riddell A., Bailey M.R., Khokryakov V., Romanov S. Plutonium Worker Dosimetry // Radiat. Environ. Biophys. 2010. V.49, No. 2. P. 203–212.
- Sahbaee P.W., Segars P., Samei E. Patient-Based Estimation of Organ Dose for a Population of 58 Adult Patients Across 13 Protocol Categories // Medical Physics. 2014. V.41, No. 7. P. 072104. https://doi.org/10.1118/1.4883778.
- Lee C., Lodwick D., Hurtado J., Pafundi D., Williams J.L., Bolch W.E. The UF Family of Reference Hybrid Phantoms for Computational Radiation Dosimetry // Physics in Medicine and Biology. 2010. V.55, No. 2. P. 339-363.
- Hardy A.J., Bostani M., Kim G.H.J., Cagnon C.H., Zankl M.A., McNitt-Gray M. Evaluating Size-Specific Dose Estimate (SSDE) as an Estimate of Organ Doses from Routine CT Exams Derived from Monte Carlo Simulations // Med. Phys. 2021. V.48, No. 10. P. 6160-6173. doi: 10.1002/mp.15128.
- СанПин 2.6.1.2523-09. Нормы радиационной безопасности (НРБ(99/2009). М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2009.
- Recommendations of the International Commission on Radiological Protection. ICRP Publication 103 // Annals of the ICRP. 2007. V.37, No. 2-4. 332 p.
- Nikupaavo U., Kaasalainen T., Reijonen V., Ahonen S.M., Kortesniemi M. Lens Dose in Routine Head CT: Comparison of Different Optimization Methods with Anthropomorphic Phantoms // Am. J. Roentgenol. 2015. V.204, No. 1. P. 117-123. doi: 10.2214/AJR.14.12763.
- Poon R., Badawy M.K. Radiation Dose and Risk to the Lens of the Eye During CT Examinations of the Brain // Med. Imaging. Radiat Oncol. 2019. V.63, No. 6. P. 786-794. doi: 10.1111/1754-9485.12950.
- Brenner A.V., Sugiyama H., Preston D.L., Sakata R., French B., Sadakane A., Cahoon E.K., Utada M., Mabuchi K., Ozasa K. Radiation Risk of Central Nervous System Tumors in the Life Span Study of Atomic Bomb Survivors, 1958-2009 // Eur. J. Epidemiol. 2020. V.35, No. 6. P. 591-600. doi: 10.1007/s10654-019-00599-y.
- Осипов М.В., Сокольников М.Э., Фомин Е.П. База данных компьютерной томографии населения г. Озёрск («Регистр КТ»): А. с. № 2020622687. Федеральное государственное унитарное предприятие Южно-Уральский институт биофизики Федерального медико-биологического агентства (ФГУП ЮУрИБФ) (RU). Опубл. 24.12.2020. URL: https://new,fips,ru/registers-doc-view/fips_servlet?DB=DB&DocNumber=2020622807&TypeFile=html (Дата обращения 22.02.2022).
- Осипов М.В., Фомин Е.П., Сокольников М.Э. Оценка влияния диагностического облучения с использованием радиационно-эпидемиологического регистра населения г. Озёрска, обследованного при помощи компьютерной томографии // Медицинская радиология и радиационная безопасность. 2020 Т.65, № 4. С. 65-73. doi: 10.12737/1024-6177-2020-65-4-65-73.
- Brooks A.L. The Impact of Dose Rate on the Linear no Threshold Hypothesis // Chem. Biol. Interact. 2019. No. 301. P. 68-80. doi: 10.1016/j.cbi.2018.12.007.
Қосымша файлдар
