Using the Bayesian Approach for the Case of Acute Inhalation of Pu-239 Industrial Compounds
- Авторлар: Vostrotin V.V.1
-
Мекемелер:
- Southern Urals Biophysics Institute
- Шығарылым: Том 69, № 5 (2024)
- Беттер: 42-52
- Бөлім: Radiation Safety
- URL: https://medbiosci.ru/1024-6177/article/view/363947
- DOI: https://doi.org/10.33266/1024-6177-2024-69-5-42-52
- ID: 363947
Дәйексөз келтіру
Толық мәтін
Аннотация
Introduction: The Bayesian approach has found wide application for the tasks of estimating doses of internal exposure under various intake scenarios. The South Ural Institute of Biophysics has accumulated considerable experience in using the Bayesian approach to estimate the expected effective doses of internal exposure for current individual dosimetry control when radionuclides intake into body by various ways. Attributing the type of compounds Moderate or Slow according to the NRB-99/2009 classification for acute inhalation of industrial Pu-239 compounds bias dose estimates to the lungs, which leads to the need to develop a new methodology.
Purpose: The development of a calculation methodology using the Bayesian approach for the case of acute inhalation of industrial Pu-239 compounds into the human body and its testing in artificial cases.
Material and methods: A technique is presented for interpreting a series of measurement results of Pu-239 activity in daily urine and/or daily feces to assess the distribution of intake, two key parameters of the biokinetic model of ICRP Publication 66 (the proportion of rapid absorption fr and the rate of slow absorption into the blood ss), as well as annual weighted equivalent doses to the lungs. The technique allows using a prior information about the estimated parameters and correctly processing measurement results below the detection limit.
Results: A jDose program has been created that implements the technique in ~ 20 minutes on a modern office computer. The program was tested on artificial cases with 10 measurements of Pu-239 activity in daily urine and 10 in daily feces during the first 10 days after acute inhalation intake at AMAD = 1 µm. Testing showed reproducibility of the set «true» parameter values in the range (average ± 2 standard deviations) with an increase in the proportion of unreliable measurement results. The increase in the proportion of unreliable measurement results had the greatest impact on the estimation of the coefficient of variation of the slow absorption rate parameter into the blood ss.
Негізгі сөздер
Әдебиет тізімі
- Schadilov A.E., Belosokhov M.V., Levina E.S. A Case of Wound Intake of Plutonium Isotopes and 241am in a Human: Application and Improvement of the Ncrp Wound Model // Health Physics. 2010. V.99. No.4. P.560-567.
- Молоканов А.А., Яценко В.Н., Кухта Б.А., Бурцев С.Л., Соколова Т.Н., Кононыкина Н.Н., Максимова Е.Ю., Яценко О.В. Расследование аварийного случая с нетипичным поступлением плутония и америция-241 в организм работника // Медицина катастроф. 2014. №1. C. 10-11.
- Sugarman S.L., Findley W.M., Toohey R.E., Dainiak N. Rapid Response, Dose Assessment, and Clinical Management of a Plutonium-Contaminated Puncture Wound // Health Physics. 2018. V.115. No.1. P.57-64.
- Молоканов А.А., Кухта Б.А., Галушкин Б.А. Расчет дозы внутреннего облучения и возможные варианты нормирования при раневом поступлении радионуклидов плутония // Медицинская радиология и радиационная безопасность. 2021. Т.65, №6. C. 27-37.
- Vostrotin V.V., Yanov A.Y., Finashov L.V. Assessment of The Committed Effective Dose Equivalent and its Uncertainty from Incidental Internal Tritium Exposure // Radiation Protection Dosimetry. 2022. ncac078.
- Ефимов А.В., Соколова А.Б., Суслова К.Г. Основные итоги научно-практической деятельности Южно-Уральского института биофизики в области радиационной безопасности // Вопросы радиационной безопасности. 2023. Т.111, №3. C.4-15.
- Кочетков О.А. Дозиметрический контроль профессионального внутреннего облучения. Общие требования: Методические указания МУ 2.6.1.065-2014. Утв. Федеральным медико-биологическим агентством 6 ноября 2014 г. М.: ФМБА России, 2014.
- Нормы радиационной безопасности (НРБ-99/2009): Санитарные правила и нормативы СанПиН 2.6.1.2523-09. М.: Федеральный центр гигиены и эпидемиологии Роспотреднадзора, 2009.
- Востротин В.В., Жданов А.Н., Ефимов А.В. Индивидуальный дозиметрический контроль (ИДК) внутреннего облучения профессиональных работников с помощью компьютерной программы «iDose 2» на основе Байесовского подхода // Вопросы радиационной безопасности. 2016. Т.2, №82. C.45-54.
- Востротин В.В., Жданов А.Н., Ефимов А.В. Тестирование системы индивидуального дозиметрического контроля (ИДК) внутреннего облучения профессиональных работников при ингаляционном поступлении нерастворимых соединений плутония с помощью компьютерной программы iDose 2 // Вопросы радиационной безопасности. 2016. Т.3, №83. C.78-83.
- Востротин В.В., Жданов А.Н., Ефимов А.В. Апробация компьютерной программы iDose 2 применительно к задачам индивидуального дозиметрического контроля (ИДК) внутреннего облучения персонала ФГУП ПО «МАЯК» при ингаляционном поступлении плутония // АНРИ. 2017. Т.4, №91. C.45-54.
- Востротин В.В. Интеграция моделей Oir Мкрз в дозиметрическую систему idose 2 // Медицинская радиология и радиационная безопасность. 2023. Т.68, №5. C.19-27.
- Востротин В.В. Методические указания по методам контроля МУК 2.6.5.045-2016: Указания по методам контроля (МУК) для определения доз внутреннего облучения персонала при стандартных и специальных условиях. Методика выполнения расчётов. МУК 2.6.5.045-2016. Озерск:ЮУрИБФ, 2016.
- Востротин В.В. и др. Патент RU 2650075 C2. Способ индивидуального дозиметрического контроля внутреннего облучения профессиональных работников с помощью компьютерной программы «iDose 2»; опубл. 2018.
- Miller G., Inkret W.C., Little T.T., Martz H.F., Schillaci M.E. Bayesian Prior Probability Distributions for Internal Dosimetry // Radiation Protection Dosimetry. 2001. V.94. No.4. P.347-352.
- Miller G., Martz H.F., Little T.T., Guilmette R. Bayesian Internal Dosimetry Calculations Using Markov Chain Monte Carlo // Radiation Protection Dosimetry. 2002. V.98. No.2. P.191-198.
- Miller G., Martz H., Little T., Bertelli L. Bayesian Hypothesis Testing-Use in Interpretation of Measurements // Health Physics. 2008. V.94. No.3. P.248-254.
- Puncher M., Birchall A. A Monte Carlo Method for Calculating Bayesian Uncertainties in Internal Dosimetry // Radiation Protection Dosimetry. 2008. V.132. No.1. P.1-12.
- Puncher M., Birchall A., Bull R.K. A Method for Calculating Bayesian Uncertainties on Internal Doses Resulting from Complex Occupational Exposures // Radiation Protection Dosimetry. 2012. V.151. No.2. P. 224-236.
- Poudel D., Miller G., Klumpp J.A., Bertelli L., Waters T.L. Bayesian Analysis of Plutonium Bioassay Data at Los Alamos National Laboratory // Health Physics. 2018. V.115. No.6. P.712-726.
- ICRP Publication 66 Human Respiratory Tract Model for Radiological Protection. ICRP 66. Pergamon. Pergamon Press. 1994.
- ICRP Publication 30 (Part 1) Limits for Intakes of Radionuclides by Workers. 1979.
- ICRP Publication 67 Age-dependent Doses to Members of the Public from Intake of Radionuclides. Part 2 Ingestion Dose Coefficients. Pergamon Press. 1993.
- Hastings W.K. Monte Carlo Sampling Methods Using Markov Chains and their Applications // Biometrika. 1970. V.57. No.1. P.97-109.
- Gelman A., Rubin D.B. Inference from Iterative Simulation Using Multiple Sequences // Statistical Science. 1992. V.7. No.4., P.457-472.
- Brooks S.P., Gelman A. General Methods for Monitoring Convergence of Iterative Simulations // Journal of Computational and Graphical Statistics. 1998. V.7. No.4. P.434-455.
- Востротин В.В., Введенский В.Э. Методические указания по методам контроля МУК 2.6.5.XXX-20XX: Методика выполнения расчета доз внутреннего облучения на основе байесовской статистики. НИР Контроль-22. Озерск: ЮУрИБФ, 2024.
- Востротин В.В., Введенский В.Э. Программа jDose, реализующая метод выполнения расчета доз внутреннего облучения на основе Байесовской статистики. НИР Контроль-22. Озерск: ЮУрИБФ, 2023.
Қосымша файлдар
