К СТАТИЧЕСКОЙ УСТОЙЧИВОСТИ ФОРМЫ ПОПЕРЕЧНОГО СЕЧЕНИЯ ТРУБОПРОВОДА, ЦИЛИНДРИЧЕСКОЙ ОБОЛОЧКИ, УГЛЕРОДНОЙ НАНОТРУБКИ

Обложка

Цитировать

Полный текст

Аннотация

На основе предположения о начальной деформированной форме поперечного сечения трубопровода, цилиндрической оболочки, углеродной нанотрубки (УНТ) без начальных напряжений определяются критические давления внутри и вне этих элементов конструкций. Изучено статическое взаимодействие неустойчивостей под действием вышеуказанных факторов.

Об авторах

А. Г. Хакимов

Институт механики им. Р.Р. Мавлютова УФИЦ РАН

Автор, ответственный за переписку.
Email: hakimov@anrb.ru
Россия, Уфа

Список литературы

  1. Ильгамов М.А. Взаимодействие неустойчивостей Эйлера, Гельмгольца, Релея // ЖТФ. 2018. Т. 63. № 2. С. 163–167. https://doi.org/10.21883/JTF.2018.02.45401.2144
  2. Дяченко И.А., Миронов А.А. Аналитические и численные исследования свободных колебаний цилиндрических оболочек с акустической средой // Проблемы прочности и пластичности. 2021. Т. 83. № 1. С. 35–48. https://doi.org/10.32326/1814-9146-2021-83-1-35-48
  3. Leizerovich G.S., Taranukha N.A. Nonobvious features of dynamics of circular cylindrical shells // Mech. Solids. 2008. V. 43. № 2. P. 246–253. https://doi.org/10.3103/S0025654408020106
  4. Rawat A., Matsagar V., Nagpal A. Finite element analysis of thin circular cylindrical shells // Proc. Indian Nat. Sci. Acad. 2016. V. 82. № 2. P. 349–355. https://doi.org/10.16943/ptinsa/2016/48426
  5. Farshidianfar A., Oliazadeh P. Free vibration analysis of circular cylindrical shells: comparison of different shell theories // Int. J. Mech. Appl. 2012. V. 2. № 5. P. 74–80. https://doi.org/10.5923/j.mechanics.20120205.04
  6. Bleich H.H., Baron M.L. Free and Forced vibration of an infinitely long cylindrical shell in an infinite acoustic medium // J. Appl. Mech. Trans. ASME. 1954. V. 21. № 2. P. 167–177.
  7. O’Connell A.D., Hofheinz M., Ansmann Mю et al. Quantum ground state and single-phonon control of a mechanical resonator // Nature. 2010. V. 464. P. 697–703. https://doi.org/10.1038/nature08967
  8. Burg T.P., Godin M., Knudsen S.M. et al. Weighing of biomolecules, single cells and single nanopar- ticles in f luid // Nature. 2007. V. 446. P. 1066–1069. https://doi.org/10.1038/nature05741
  9. Husale S., Persson H.H.J., Sahin O. DNA nanomechanics allows direct digital detection of comple- mentary DNA and microRNA targets // Nature. 2009. V. 462. P. 1075–1078. https://doi.org/10.1038/nature08626
  10. Sirenko Y.M., Stroscio M.A., Kim K.W. Elastic vibrations of microtubules in a fluid // Phys. Rev. V. 53. № 1. 1996. P. 1003–1010.
  11. Аннин Б.Д., Алехин В.В., Бабичев А.В., Коробейников С.Н. Применение метода молекулярной механики к задачам устойчивости и собственных колебаний однослойных углеродных нанотрубок // Изв. РАН. МТТ. 2012. № 5. С. 65–83.
  12. Chen Y., Alba M., Tieu T., Tong Z., Minhas R.S., Rudd D., Voelcker N.H., Cifuentes-Rius A., and Elnathan R. Engineering Micro-Nanomaterials for Biomedical Translation // Adv. NanoBiomed Res. 2021. № 1. P. 2100002. https://doi.org/10.1002/anbr.202100002
  13. Ильгамов М.А. Влияние давления окружающей среды на изгиб тонкой пластины и пленки // ДАН. 2017. Т. 476. № 4. С. 402–405.
  14. Ильгамов М.А. Влияние поверхностных эффектов на изгиб и колебания нанопленок // ФТТ. 2019. Т. 61. № 10. С. 1825–1830.
  15. Ilgamov M.A., Khakimov A.G. Influence of pressure on the frequency spectrum of micro and nanoresonators on hinged supports // J. Appl. Comput. Mech. 2021. V. 7. № 2. P. 977–983. https://doi.org/10.22055/JACM.2021.36470.2848
  16. Дмитриев С.В., Сунагатова И.Р., Ильгамов М.А., Павлов И.С. Собственные частоты радиальных колебаний углеродных нанотрубок // ЖТФ. 2021. Т. 91. Вып. 11. С. 1732–1737. https://doi.org/10.21883/JTF.2021.11.51536.127-21
  17. Dmitriev S.V., Semenov A.S., Savin A. ., Ilgamov M.A., Bachurin D.V. Rotobreather in a carbon nanotube bundle // Journal of Micromechanics and Molecular Physics 2021, 2050010. https://doi.org/10.1142/S2424913020500101
  18. Елецкий А.В. Механические свойства углеродных нанотрубок и материалов на их основе // Усп. физ.наук. 2007. Т. 177. № 3. С. 233–274.
  19. Harik V.M. Ranges of applicability for the continuum beam model in the mechanics of carbon nanotubes and nanorods // Solid State Commun. 2001. V. 120. P. 331–335. https://doi.org/10.1016/S0038-1098(01)00383-0
  20. Qian D., Wagner G.J., Lin W.K., Ju M.F., Ruoff R.S. Mechanics of carbon nanotubes // Appl. Mech. Rev. 2002. V. 55. № 6. P. 495–532. https://doi.org/10.1115/1.1490129
  21. Timoshenko S.P., Young D.H., Weaver W. Vibration Problems in Engineering. New York: John Wiley & Sons, 1974.
  22. Wu J., Zang J., Larade B., Guo H., Gong X.G., Liu F. Computational design of carbon nanotube electromechanical pressure sensors // Phys. Rev. B. 2004. V. 69. P. 153406. https://doi.org/10.1103/PhysRevB.69.153406
  23. Bi K., Hao H. Using pipe-in-pipe systems for subsea pipeline vibration control // Eng. Struct. 2016. V. 109. P. 75–84. https://doi.org/10.1016/j.engstruct.2015.11.018
  24. Davaripour F., Quinton B.W.T., Pike K. Effect of damage progression on the plastic capacity of a subsea pipeline // Ocean Eng. 2021. V. 234. https://doi.org/10.1016/j.oceaneng.2021.109118
  25. Cheng A., Chen N.-Z. Corrosion fatigue crack growth modelling for subsea pipeline steels // Ocean Eng. 2017. V. 142. P. 10–19. https://doi.org/10.1016/j.oceaneng.2017.06.057

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2.

Скачать (59KB)
3.

Скачать (19KB)
4.

Скачать (23KB)
5.

Скачать (49KB)

© А.Г. Хакимов, 2022

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).