Biomechanical Modeling of Osteotomies of the First Metatarsal Bone in Normal and Osteoporotic Conditions
- Autores: Maryankin K.A.1, Magomedov I.M.1, Bessonov L.V.1, Dol A.V.1, Kireev S.I.1, Ivanov D.V.1
-
Afiliações:
- Saratov National Research State University named after N.G. Chernyshevsky
- Edição: Nº 5 (2025)
- Páginas: 109-123
- Seção: Articles
- URL: https://medbiosci.ru/1026-3519/article/view/315576
- DOI: https://doi.org/10.31857/S1026351925050063
- EDN: https://elibrary.ru/bvlosg
- ID: 315576
Citar
Resumo
Palavras-chave
Sobre autores
K. Maryankin
Saratov National Research State University named after N.G. ChernyshevskySaratov, Russia
I. Magomedov
Saratov National Research State University named after N.G. ChernyshevskySaratov, Russia
L. Bessonov
Saratov National Research State University named after N.G. ChernyshevskySaratov, Russia
A. Dol
Saratov National Research State University named after N.G. ChernyshevskySaratov, Russia
S. Kireev
Saratov National Research State University named after N.G. ChernyshevskySaratov, Russia
D. Ivanov
Saratov National Research State University named after N.G. Chernyshevsky
Email: ivanovdv.84@yandex.ru
Saratov, Russia
Bibliografia
- Favre P., Farine M., Snedeker J.G., Maquieira G.J., Espinosa N. Biomechanical consequences of first metatarsal osteotomy in treating hallux valgus // Clinical Biomechanics. 2010. V. 19. № 7. P. 721–727. https://doi.org/10.1016/j.clinbiomech.2010.05.002
- Полиенко А.В., Иванов Д.В., Киреев С.И., Бессонов Л.В., Мулдашева А.М., Оленко Е.С. Численный анализ напряженно-деформированного состояния остеотомий первой плюсневой кости // Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика. 2023. Т. 23. № 4. С. 496–511. https://doi.org/10.18500/1816-9791-2023-23-4-496-511
- Голядкина А.А., Полиенко А.В., Киреев С.И., Курманов А.Г., Киреев В.С. Анализ биомеханических параметров остеотомии первой плюсневой кости // Российский журнал биомеханики. 2019. Т. 23. № 3. С. 400–410. https://doi.org/10.15593/RZhBiomeh/2019.3.06
- Li Y., Wang Y., Tang K., Tao X. Modified scarf osteotomy for hallux valgus: From a finite element model to clinical results // J. Orthop. Surg. 2022. V. 30. № 3. 10225536221143816. https://doi.org/10.1177/10225536221143816
- Shih K.S., Hsu C.C., Huang G.T. Biomechanical investigation of hallux valgus deformity treated with different osteotomy methods and Kirschner wire fixation strategies using the finite element method // Bioengineering (Basel). 2023. V. 10. № 4. P. 499. https://doi.org/10.3390/bioengineering10040499
- Xie Q., Li X., Wang P. Three-dimensional finite element analysis of biomechanics of osteotomy ends with three different fixation methods after hallux valgus minimally invasive osteotomy // J. Orthop. Surg. 2023. V. 31. № 2. 10225536231175235. https://doi.org/10.1177/10225536231175235
- Kim J.S., Cho H.K., Young K.W., Kim J.S., Lee K.T. Biomechanical Comparison study of three fixation methods for proximal chevron osteotomy of the first metatarsal in hallux valgus // Clin. Orthop. Surg. 2017. V. 9. № 4. P. 514–520. https://doi.org/10.4055/cios.2017.9.4.514
- Esses S.I., McGuire R., Jenkins J., Finkelstein J., Woodard E., Watters W.C. III et al. The treatment of symptomatic osteoporotic spinal compression fractures // Am. Acad. Orthop. Surg. 2011. V. 19. № 3. P. 176–182. https://doi.org/10.2106/JBJS.9320ebo
- Kang S., Park C.H., Jung H., Lee S., Min Y.S., Kim C.H. et al. Analysis of the physiological load on lumbar vertebrae in patients with osteoporosis: a finite-element study // Sci Rep. 2022. V. 12. № 1. P. 11001. https://doi.org/10.1038/s41598-022-15241-3
- Seeman E. Reduced bone formation and increased bone resorption: rational targets for the treatment of osteoporosis // Osteoporos Int. 2003. V. 14. P. 2–8. https://doi.org/10.1007/s00198-002-1340-9
- Zhang Y., Awrejcewicz J., Szymanowska O., Shen S., Zhao X., Baker J.S., Gu Y. Effects of severe hallux valgus on metatarsal stress and the metatarsophalangeal loading during balanced standing: A finite element analysis // Comput. Biol. Med. 2018. V. 97. P. 1–7. https://doi.org/10.1016/j.compbiomed.2018.04.010
- Иванов Д.В., Доль А.В., Бессонов Л.В., Киреев С.И., Гуляева А.О. Методика механических испытаний при консольном нагружении плюсневых костей стопы // Российский журнал биомеханики. 2023. Т. 27. № 4. С. 84–92. https://doi.org/10.15593/RZhBiomeh/2023.4.06
- Deenik A.R., Pilot P., Brandt S.E., van Mameren H., Geesink R.G., Draijer W.F. Scarf versus chevron osteotomy in hallux valgus: a randomized controlled trial in 96 patients // Foot Ankle Int. 2007. V. 28. № 5. P. 537–541. https://doi.org/10.3113/FAI.2007.0537
- Ma Q., Liang X., Lu J. Chevron osteotomy versus scarf osteotomy for hallux valgus correction: A meta-analysis // Foot Ankle Surg. 2019. V. 25. № 6. P. 755–760. https://doi.org/10.1016/j.fas.2018.09.003
- Sun X., Guo Z., Cao X., Xiong B., Pan Y., Sun W., Bai Z. Stability of osteotomy in minimally invasive hallux valgus surgery with “8” shaped bandage during gait: a finite element analysis // Front. Bioeng. Biotechnol. 2024. V. 12. P. 1415617. https://doi.org/10.3389/fbioe.2024.1415617
- Kim J.S., Cho H.K., Young K.W., Kim J.S., Lee K.T. Biomechanical comparison study of three fixation methods for proximal chevron osteotomy of the first metatarsal in hallux valgus // Clin. Orthop. Surg. 2017. V. 9. № 4. P. 514–520. https://doi.org/10.4055/cios.2017.9.4.514
- Havaldar R., Pilli S.C., Putti B.B. Insights into the effects of tensile and compressive loadings on human femur bone // Adv. Biomed. Res. 2014. V. 3. № 1. P. 101. https://doi.org/10.4103/2277-9175.129375
- Иванов Д.В. Биомеханическая поддержка решения врача при выборе варианта лечения на основе количественных критериев оценки успешности // Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика. 2022. Т. 22. № 1. С. 62–89. https://doi.org/10.18500/1816-9791-2022-22-1-62-89
- Гуляева А.О., Фалькович А.С., Киреев С.И., Терин Д.В., Магомедов И.М. Исследование связи между подошвенным давлением и тонусом икроножной мышцы. Разработка и апробация нового экспериментального стенда // Российский журнал биомеханики. 2023. Т. 27. № 4. С. 127–137. https://doi.org/10.15593/RZhBiomeh/2023.4.10
- Favre P., Farine M., Snedeker J.G., Maquieira G.J., Espinosa N. Biomechanical consequences of first metatarsal osteotomy in treating hallux valgus // Clinical Biomechanics. 2010. V. 25. № 7. P. 721–727. https://doi.org/10.1016/j.clinbiomech.2010.05.002
- Polienko A.V., Ivanov D.V., Kireev S.I., Bessonov L.V., Muldasheva A.M., Olenko E.S. Numerical analysis of stress-strain state in first metatarsal osteotomies // Izvestiya Saratovskogo Universiteta. Novaya Seriya. Seriya: Matematika. Mekhanika. Informatika. 2023. V. 23. № 4. P. 496–511. https://doi.org/10.18500/1816-9791-2023-23-4-496-511
- Golyadkina A.A., Polienko A.V., Kireev S.I., Kurmanov A.G., Kireev V.S. Analysis of biomechanical parameters of first metatarsal osteotomy // Russian Journal of Biomechanics. 2019. V. 23. № 3. P. 400–410. https://doi.org/10.15593/RZhBiomeh/2019.3.06
- Li Y., Wang Y., Tang K., Tao X. Modified scarf osteotomy for hallux valgus: From a finite element model to clinical results // J. Orthop. Surg. 2022. V. 30. № 3. 10225536221143816. https://doi.org/10.1177/10225536221143816
- Shih K.S., Hsu C.C., Huang G.T. Biomechanical Investigation of Hallux Valgus Deformity Treated with Different Osteotomy Methods and Kirschner Wire Fixation Strategies Using the Finite Element Method // Bioengineering (Basel). 2023. V. 10. № 499. https://doi.org/10.3390/bioengineering10040499
- Xie Q., Li X., Wang P. Three-dimensional finite element analysis of biomechanics of osteotomy ends with three different fixation methods after hallux valgus minimally invasive osteotomy // J. Orthop. Surg. 2023. V. 31. № 2. 10225536231175235. https://doi.org/10.1177/10225536231175235
- Kim J.S., Cho H.K., Young K.W., Kim J.S., Lee K.T. Biomechanical Comparison Study of Three Fixation Methods for Proximal Chevron Osteotomy of the First Metatarsal in Hallux Valgus // Clin. Orthop. Surg. 2017. V. 9. № 4. P. 514–520. https://doi.org/10.4055/cios.2017.9.4.514
- Esses S.I., McGuire R., Jenkins J., Finkelstein J., Woodard E., Watters W.C. III et al. The treatment of symptomatic osteoporotic spinal compression fractures // Am. Acad. Orthop. Surg. 2011. V. 19. № 3. P. 176–182. https://doi.org/10.2106/JBJS.9320ebo
- Kang S., Park C.H., Jung H., Lee S., Min Y.S., Kim C.H. et al. Analysis of the physiological load on lumbar vertebrae in patients with osteoporosis: a finite-element study // Sci Rep. 2022. V. 12. № 1. P. 11001. https://doi.org/10.1038/s41598-022-15241-3
- Seeman E. Reduced bone formation and increased bone resorption: rational targets for the treatment of osteoporosis // Osteoporos Int. 2003. V. 14. Suppl 3. P. S2–S8. https://doi.org/10.1007/s00198-002-1340-9
- Zhang Y., Awrejcewicz J., Szymanowska O., Shen S., Zhao X., Baker J.S., Gu Y. Effects of severe hallux valgus on metatarsal stress and the metatarsophalangeal loading during balanced standing: A finite element analysis // Comput. Biol. Med. 2018. V. 97. P. 1–7. https://doi.org/10.1016/j.compbiomed.2018.04.010
- Ivanov D.V., Dol A.V., Bessonov L.V., Kireev S.I., Gulyaeva A.O. Methodology for mechanical testing of metatarsal bones under cantilever loading // Russian Journal of Biomechanics. 2023. V. 27. № 4. P. 84–92. https://doi.org/10.15593/RZhBiomeh/2023.4.06
- Deenik A.R., Pilot P., Brandt S.E., van Mameren H., Geesink R.G., Draijer W.F. Scarf versus chevron osteotomy in hallux valgus: a randomized controlled trial in 96 patients // Foot Ankle Int. 2007. V. 28. № 3. P. 537–541. https://doi.org/10.3113/FAI.2007.0537
- Ma Q., Liang X., Lu J. Chevron osteotomy versus scarf osteotomy for hallux valgus correction: A meta-analysis // Foot Ankle Surg. 2019. V. 25. № 6. P. 755–760. https://doi.org/10.1016/j.fas.2018.09.003
- Sun X., Guo Z., Cao X., Xiong B., Pan Y., Sun W., Bai Z. Stability of osteotomy in minimally invasive hallux valgus surgery with “8” shaped bandage during gait: a finite element analysis // Front. Bioeng. Biotechnol. 2024. V. 12. P. 1415617. https://doi.org/10.3389/fbioe.2024.1415617
- Kim J.S., Cho H.K., Young K.W., Kim J.S., Lee K.T. Biomechanical comparison study of three fixation methods for proximal chevron osteotomy of the first metatarsal in hallux valgus // Clin. Orthop. Surg. 2017. V. 9. № 4. P. 514–520. https://doi.org/10.4055/cios.2017.9.4.514
- Havaldar R., Pilli S.C., Putti B.B. Insights into the effects of tensile and compressive loadings on human femur bone // Adv. Biomed. Res. 2014. V. 3. № 101. https://doi.org/10.4103/2277-9175.129375
- Ivanov D.V. Biomechanical support for clinical decision-making in treatment selection based on quantitative success criteria // Izvestiya Saratovskogo Universiteta. Novaya Seriya. Seriya: Matematika. Mekhanika. Informatika. 2022. V. 22. № 1. P. 62–89. https://doi.org/10.18500/1816-9791-2022-22-1-62-89
- Gulyaeva A.O., Falkovich A.S., Kireev S.I., Terin D.V., Magomedov I.M. Study of the relationship between plantar pressure and calf muscle tone. Development and testing of a new experimental setup // Russian Journal of Biomechanics. 2023. V. 27. № 4. P. 127–137. https://doi.org/10.15593/RZhBiomeh/2023.4.10
Arquivos suplementares
