ОПТИМАЛЬНОЕ УПРАВЛЕНИЕ КИНЕТИЧЕСКИМ МОМЕНТОМ ТВЕРДОГО ТЕЛА (КОСМИЧЕСКОГО АППАРАТА) ПРИ ВЫПОЛНЕНИИ ПРОСТРАНСТВЕННОГО РАЗВОРОТА

Обложка

Цитировать

Полный текст

Аннотация

Представлено кватернионное решение динамической задачи оптимального разворота твердого тела (например, космического аппарата) из известного начального в заданное конечное угловое положение. Оптимизация программы управления проводится с использованием комбинированного показателя, сочетающего квадратичный критерий качества и время разворота, минимизируемый функционал объединяет в заданной пропорции энергетические затраты и длительность маневра. На основе принципа максимума и кватернионных моделей и методов исследования управляемого движения твердого тела (космического аппарата) получено решение поставленной задачи. Построение оптимального вращения основано на дифференциальном уравнении, связывающем кинетический момент и кватернион ориентации твердого тела. В аналитической форме записаны условия оптимальности и изучены свойства оптимального движения. Представлены аналитические уравнения и расчетные формулы для нахождения оптимального управления. Закон управления сформулирован в виде явной зависимости управляющих переменных от фазовых координат. Даны ключевые соотношения, определяющие оптимальные значения параметров алгоритма управления кинетическим моментом. В случае динамически симметричного тела дается полное решение задачи разворота в замкнутой форме: получены аналитические зависимости как явные функции времени для управляющих переменных и соотношения для расчета параметров закона управления. Приводятся численный пример и результаты математического моделирования вращения космического аппарата как твердого тела при оптимальном управлении, демонстрирующие практическую реализуемость предложенного метода управления.

Об авторах

М. В. Левский

Научно-исследовательский институт космических систем им. А.А. Максимова –
филиал Государственного космического научно-производственного центра им. М.В. Хруничева

Автор, ответственный за переписку.
Email: levskii1966@mail.ru
Россия, Королев

Список литературы

  1. Бранец В.Н., Шмыглевский И.П. Применение кватернионов в задачах ориентации твердого тела. М.: Наука, 1973. 320 с.
  2. Алексеев К.Б., Малявин А.А., Шадян А.В. Экстенсивное управление ориентацией космического аппарата на основе нечеткой логики // Полет. 2009. № 1. С. 47–53.
  3. Велищанский М.А., Крищенко А.П., Ткачев С.Б. Синтез алгоритмов переориентации космического аппарата на основе концепции обратной задачи динамики // Изв. РАН. ТиСУ. 2003. № 5. С. 156–163.
  4. Ваньков А.И. Адаптивное робастное управление угловым движением КА с использованием прогнозирующих моделей // Космич. исслед. 1994. Т. 32. Вып. 4–5. С. 13–21.
  5. Раушенбах Б.В., Токарь Е.Н. Управление ориентацией космических аппаратов. М.: Наука, 1974. 600 с.
  6. Levskii M.V. About method for solving the optimal control problems of spacecraft spatial orientation // Probl. Nonlin. Anal. Eng. Sys. 2015. V. 21. № 2. P. 61–75.
  7. Решмин С.А. Пороговая абсолютная величина релейного управления при наискорейшем приведении спутника в гравитационно-устойчивое положение // Доклады Академии наук. 2018. Том 480. № 6. С. 671–675. https://doi.org/10.1134/S1028335818060101
  8. Junkins J. L., Turner J. D. Optimal Spacecraft Rotational Maneuvers. Elsevier. USA, 1986. 515 p.
  9. Молоденков A.В., Сапунков Я.Г. Особые режимы управления в задаче оптимального разворота сферически-симметричного космического аппарата // Изв. РАН. ТиСУ. 2009. № 6. С. 47–54. https://doi.org/10.1134/S1064230709060057
  10. Молоденков А.В., Сапунков Я.Г. Решение задачи оптимального разворота осесимметричного космического аппарата с ограниченным и импульсным управлением при произвольных граничных условиях // Изв. РАН. ТиСУ. 2007. № 2. С. 152–165. https://doi.org/10.1134/S1064230707020189
  11. Бранец В.Н., Черток М.Б., Казначеев Ю.В. Оптимальный разворот твердого тела с одной осью симметрии // Космич. исслед. 1984. Т. 22. Вып. 3. С. 352–360.
  12. Shen H., Tsiotras P. Time-optimal Control of Axi-symmetric Rigid Spacecraft with two Controls // AIAA J. Guid. Contr. Dyn. 1999. V. 22. № 5. P. 682–694. https://doi.org/10.2514/2.4436
  13. Молоденков A.В., Сапунков Я.Г. Аналитическое решение задачи оптимального по быстродействию разворота осесимметричного космического аппарата в классе конических движений // Изв. РАН. ТиСУ. 2018. № 2. С. 131–147. https://doi.org/10.7868/S0002338818020117
  14. Scrivener S., Thompson R. Survey of Time-optimal Attitude Maneuvers // J. Guid. Contr. Dyn. 1994. V. 17. № 2. P. 225–233.
  15. Zhou H., Wang D., Wu B., EK Poh. Time-optimal reorientation for rigid satellite with reaction wheels // Int. J. Contr. 2012. V. 85. № 10. P. 1–12. https://doi.org/10.1080/00207179.2012.688873
  16. Левский М.В. Применение принципа максимума Л.С. Понтрягина к задачам оптимального управления ориентацией космического аппарата // Изв. РАН. ТиСУ. 2008. № 6. С. 144–157. https://doi.org/10.1134/S1064230708060117
  17. Решмин С.А. Пороговая абсолютная величина релейного управления при наискорейшем приведении спутника в желаемое угловое положение // Изв. РАН. ТиСУ. 2018. № 5. С. 30–41. https://doi.org/10.1134/S106423071805012X
  18. Левский М.В. Кинематически оптимальное управление переориентацией космического аппарата // Изв. РАН. ТиСУ. 2015. № 1. С. 119–136. https://doi.org/10.1134/S1064230714050116
  19. Левский М.В. Об одном случае оптимального управления пространственной ориентацией космического аппарата // Изв. РАН. ТиСУ. 2012. № 4. С. 115–130. https://doi.org/10.1134/S1064230712020086
  20. Бирюков В.Г., Челноков Ю.Н. Построение оптимальных законов изменения вектора кинетического момента твердого тела // Изв. РАН. МТТ. 2014. № 5. С. 3–21.
  21. Зелепукина О.В., Челноков Ю.Н. Построение оптимальных законов изменения вектора кинетического момента динамически симметричного твердого тела // Изв. РАН. МТТ. 2011. № 4. С. 31–49. https://doi.org/10.3103/S0025654411040030
  22. Левский М.В. Синтез оптимального управления терминальной ориентацией космического аппарата с использованием метода кватернионов // Изв. РАН. МТТ. 2009. № 2. С. 7–24. https://doi.org/10.3103/S0025654409020022
  23. Левский М.В. Особенности управления ориентацией космического аппарата, оборудованного инерционными исполнительными органами // Мехатроника, автоматизация, управление. 2015. Т. 16. № 3. С. 188–195. https://doi.org/10.17587/mau.16.188-195
  24. Levskii M.V. Special Aspects in Attitude Control of a Spacecraft, Equipped with Inertial Actuators // J. Comp. Sci. Appl. Informat. Technol. 2017. V. 2. № 4. P. 1–9. https://doi.org/10.15226/2474-9257/2/4/00121
  25. Quang M. Lam. Robust and adaptive reconfigurable control for satellite attitude control subject to under-actuated control condition of reaction wheel assembly // Math. Eng. Sci. Aerosp. 2018. V. 9. № 1. P. 47–63.
  26. Левский М.В. Использование универсальных переменных в задачах оптимального управления ориентацией космических аппаратов // Мехатроника, автоматизация, управление. 2014. № 1. С. 53–59.
  27. Стрелкова Н.А. Об оптимальной переориентации твердого тела // Проблемы механики управляемого движения. Нелинейные динамические системы. Пермь: ПГУ, 1990. С. 115–133.
  28. Зубов Н.Е., Ли М.В., Микрин Е.А., Рябченко В.Н. Терминальное построение орбитальной ориентации космического аппарата // Изв. РАН. ТиСУ. 2017. № 4. С. 154–173. https://doi.org/10.1134/S1064230717040190
  29. Понтрягин Л.С., Болтянский В.Г., Гамкрелидзе Р.В., Мищенко Е.Ф. Математическая теория оптимальных процессов. M.: Наука, 1983. 392 с.
  30. Янг Л. Лекции по вариационному исчислению и теории оптимального управления. М.: Мир, 1974. 488 с.
  31. Банит Ю.Р., Беляев М.Ю., Добринская Т.А., Ефимов Н.И., Сазонов В.В., Стажков В.М. Определение тензора инерции международной космической станции по телеметрической информации. Препринт ИПМ им. М.В. Келдыша РАН. № 57. М.: ИПМ, 2002.
  32. Журавлев В.Ф., Климов Д.М. Прикладные методы в теории колебаний. М.: Наука, 1988. 328 с.
  33. Левский М.В. Устройство формирования параметров регулярной прецессии твердого тела. Патент на изобретение РФ № 2146638 // Бюллетень “Изобретения. Заявки и патенты”. 2000. № 8. С. 148.

Дополнительные файлы


© М.В. Левский, 2022

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».