О ВЛИЯНИИ ХИРАЛЬНОСТИ СТРУКТУРЫ АУКСЕТИЧЕСКИХ МЕТАМАТЕРИАЛОВ НА СОПРОТИВЛЕНИЕ ПРОБИВАНИЮ УДАРНИКОМ

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Экспериментально исследовались свойства метаматериалов с отрицательным коэффициентом Пуассона (с ауксетической структурой на основе ячейки в виде вогнутого шестиугольника) сопротивляться пробиванию по нормали жестким сферическим ударником. С помощью 3D-принтера из гибкого термопластичного полиуретана TPU 95A пластика и жесткого e-PLA-пластика были изготовлены одинаковые по массе образцы с хиральной и нехиральной структурой, которые сравнивались по способности снижать кинетическую энергию ударников на скорости около 190 м/c. Было установлено, что хиральность структуры образцов (как для TPU, так и для PLA-пластиков) приводит к усилению их защитных свойств. Однако, при повороте структуры образцов на 90° лучшее сопротивление пробиванию оказывали образцы без хиральности. По результатам проведенной серии экспериментов с TPU и PLA образцами самыми эффективными по сопротивлению пробиванию ударником оказались ауксетики из термопластичного полиуретана, с развернутой на 90° нехиральной структурой.

Об авторах

С. Ю Иванова

Институт проблем механики им. А.Ю. Ишлинского РАН, Москва

Email: lisovenk@ipmnet.ru

К. Ю Осипенко

Институт проблем механики им. А.Ю. Ишлинского РАН, Москва

Email: lisovenk@ipmnet.ru

Н. В Баничук

Институт проблем механики им. А.Ю. Ишлинского РАН, Москва

Автор, ответственный за переписку.
Email: lisovenk@ipmnet.ru

Д. С Лисовенко

Институт проблем механики им. А.Ю. Ишлинского РАН, Москва

Email: lisovenk@ipmnet.ru

Список литературы

  1. Lim T.-C. Auxetic Materials and Structures. Singapore: Springer, 2015. https://doi.org/10.1007/978-981-287-275-3
  2. Kolken H.M.A., Zadpoor A.A. Auxetic Mechanical Metamaterials // RSC Adv. 2017. V. 7. № 9. P. 5111–5129. https://doi.org/10.1039/C6RA27333E
  3. Ren X., Das R., Tran P. et al. Auxetic Metamaterials and Structures: A Review // Smart Mater. Struct. 2018. V. 27. № 2. P. 023001. https://doi.org/10.1088/1361-665X/aaa61c
  4. Wu W., Hu W., Qian G. et al. Mechanical design and multifunctional applications of chiral mechanical metamaterials: A review // Mater. Des. 2019. V. 180. P. 107950. https://doi.org/10.1016/j.matdes.2019.107950
  5. Городцов В.А. Лисовенко Д.С. Ауксетики среди материалов с кубической анизотропией // Известия РАН. МТТ. 2020. № 4. С. 7–24. https://doi.org/10.31857/S0572329920040054
  6. Шитикова М.В. Обзор вязкоупругих моделей с операторами дробного порядка, используемых в динамических задачах механики твердого тела // Известия РАН. МТТ. 2022. № 1. С. 3–40. https://doi.org/10.31857/S0572329921060118
  7. Novak N., Vesenjak M., Ren Z. Auxetic cellular materials-a review // Strojniški vestnik – Journal of Mechanical Engineering. 2016. V. 62. № 9. P. 485–493. https://doi.org/10.5545/sv-jme.2016.3656
  8. Kelkar P.U., Kim H.S., Cho K.-H. et. al. Cellular Auxetic Structures for Mechanical Metamaterials: A Review // Sensors. 2020. V. 20. № 11. P. 3132. https://doi.org/10.3390/s20113132
  9. Joseph A., Manesh V., Harursampath D. On the application of additive manufacturing methods for auxetic structures: A review // Adv. Manuf. 2021. V. 9. № 3. P. 342–368. https://doi.org/10.1007/s40436-021-00357-y
  10. Иванова С.Ю., Осипенко К.Ю., Кузнецов В.А., Соловьев Н.Г., Баничук Н.В., Лисовенко Д.С. Экспериментальное исследование свойств ауксетических и неауксетических метаматериалов из металла при проникании в них жестких ударников // Известия РАН. МТТ. 2023. № 2. С. 176–180. https://doi.org/10.31857/S0572329922600773
  11. Иванова С.Ю., Осипенко К.Ю., Демин А.И., Баничук Н.В., Лисовенко Д.С. Изучение свойств метаматериалов с отрицательным коэффициентом Пуассона при пробивании жестким ударником // Известия РАН. МТТ. 2023. № 5. С. 120–130. https://doi.org/10.31857/S0572329923600366
  12. Иванова С.Ю., Осипенко К.Ю., Баничук Н.В., Лисовенко Д.С. Экспериментальное исследование свойств метаматериалов на основе PLA пластика при пробивании жестким ударником // Известия РАН. МТТ. 2024. № 4. С. 207–215. https://doi.org/10.31857/S1026351924040146
  13. Ivanova S.Yu., Osipenko K.Yu., Banichuk N.V., Lisovenko D.S. Investigation of the effect of a viscous filler on the punching process of auxetic and non-auxetic metamaterials // Mech. Solids. 2024. V. 59. № 7. P. 3727–3734. https://doi.org/10.1134/S0025654424606633
  14. Иванова С.Ю., Осипенко К.Ю., Баничук Н.В., Лисовенко Д.С. Исследование влияния вязкого заполнителя на механические свойства метаматериалов с отрицательным и положительным коэффициентом Пуассона при пробивании жестким ударником // Вестник Чувашского государственного педагогического университета им. И.Я. Яковлева. Серия: Механика предельного состояния. 2024. № 4 (62). С. 62–75. https://doi.org/10.37972/chgpu.2024.62.4.005
  15. Иванова С.Ю., Осипенко К.Ю., Баничук Н.В., Лисовенко Д.С. Влияние температуры метаматериалов на основе гибкого пластика TPU 95A на сопротивление пробиванию жестким ударником // Известия РАН. МТТ. 2025. № 1. С. 197–208. https://doi.org/10.31857/S1026351925010108
  16. Иванова С.Ю., Осипенко К.Ю., Баничук Н.В., Лисовенко Д.С. О влиянии вязкого заполнителя на сопротивление пробиванию ударником гибких метаматериалов с ауксетическими свойствами // Изв. РАН. МТТ. 2025. № 2. С. 267–278. https://doi.org/10.31857/S1026351925020156
  17. Gao Y., Huang H. Energy absorption and gradient of hybrid honeycomb structure with negative Poisson’s ratio // Mech. Solids. 2022. V. 57. № 5. P. 1118–1133. https://doi.org/10.3103/S0025654422050053
  18. Хing Y., Deng B., Cao M. et al. Influence of structural and morphological variations in orthogonal trapezoidal aluminum honeycomb on quasi-static mechanical properties // Mech. Solids. 2024. V. 59. № 1. P. 445–458. https://doi.org/10.1134/S0025654423602550
  19. Скрипняк В.В., Чирков М.О., Скрипняк В.А. Моделирование механической реакции ауксетических метаматериалов на динамические воздействия // Вестник ПНИПУ. Механика. 2021. № 2. C. 144–152. https://doi.org/10.15593/perm.mech/2021.2.13
  20. Imbalzano G., Tran P., Lee P.V.S. et. al. Influences of material and geometry in the performance of auxetic composite structure under blast loading // Appl. Mech. Mater. 2016. V. 846. P. 476–481. https://doi.org/10.4028/www.scientific.net/amm.846.476
  21. Zhao X., Gao Q., Wang L. et. al. Dynamic crushing of double-arrowed auxetic structure un-der impact loading // Mater. Des. 2018. V. 160. P. 527–537. https://doi.org/10.1016/j.matdes.2018.09.041
  22. Li C., Shen H.S., Wang H. Nonlinear dynamic response of sandwich plates with functionally graded auxetic 3D lattice core // Nonlinear Dyn. 2020. V. 100. P. 3235–3252. https://doi.org/10.1007/s11071-020-05686-4
  23. Qiao J.X., Chen C.Q. Impact resistance of uniform and functionally graded auxetic double arrowhead honeycombs // Inter. J. Impact Eng. 2015. V. 83. P. 47–58. https://doi.org/10.1016/j.ijimpeng.2015.04.005
  24. Novak N., Starcevic L., Vesenjak M. et. al. Blast response study of the sandwich composite panels with 3D chiral auxetic core // Compos. Struct. 2019. V. 210. P. 167–178. https://doi.org/10.1016/j.compstruct.2018.11.050
  25. Yu Y., Fu T., Wang S., Yang C. Dynamic response of novel sandwich structures with 3D sinusoid-parallel-hybrid honeycomb auxetic cores: The cores based on negative Poisson’s ratio of elastic jump // Eur. J. Mech. – A/Solids. 2025. V. 109. P. 105449. https://doi.org/10.1016/j.euromechsol.2024.105449
  26. Shen Z.Y., Wen Y.K., Shen L.Y. et. al. Dynamic response and energy absorption characteristics of auxetic concave honeycomb pad for ballistic helmet under shock wave and bullet impact // Mech. Solids. 2024. V. 59. № 5. P. 3050–3067. https://doi.org/10.1134/S0025654424605159
  27. Jiang Q., Hao B., Chen G. et. al. Analysis of the penetration ability of exponential bullets on TPMS structures with variable density // Mech. Solids. 2024. V. 59. № 5. P. 3198–3211. https://doi.org/10.1134/S0025654424605640
  28. Usta F., Türkmen H.S., Scarpa F. High-velocity impact resistance of doubly curved sandwich panels with re-entrant honeycomb and foam core // Int. J. Impact Eng. 2022. V. 165. P. 104230. https://doi.org/10.1016/j.ijimpeng.2022.104230

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».