PAR1-Mediated Retrograde Action of Brain-Derived Neurotrophic Factor and Its Prodomain in Mature Mouse Motor Synapses is Provided by Furin Activity

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

At mature mouse diaphragm motor synapses of mice, we recorded miniature and evoked by phrenic nerve stimulation endplate multiquantal potentials (MEPPs and EPPs, respectively). The protease-activated receptor (PAR1) agonist TFLLR-NH2 increased MEPP amplitude, which was prevented by inhibition of the vesicular acetylcholine transporter with vesamicol. TFLLR-NH2 increased not only the amplitude of MEPPs, but also their frequency, when LM11A-31 (100 nM) inhibited p75 receptors for the BDNF prodomain, This indicates that after activation of PAR1, the BDNF prodomain is released from muscle fibers along with mature BDNF, whose action dominates in mature motor synapses. The extracellular matrix metalloprotease MMP-3 inhibitor NNGH (10 μM) did not prevent the potentiating effect of TFLLR-NH2 on MEPP amplitude. Inhibition of the intracellular protease furin BOS-318 (0.5 μM) for two hours did not affect the parameters of spontaneous and evoked ACh release and was unable to prevent the TFLLR-NH2-induced increase in MEPP amplitude. When BOS-318 was administered orally (10 mg/kg) one day before electrophysiological experiments, the PAR1 agonist lost its ability to potentiate neuromuscular transmission, which may indicate the release of proBDNF from muscle fibers under such conditions. It was concluded that intracellular furin-mediated maturation of BDNF occurs in muscle fibers with the formation of both the brain-derived neurotrophic factor itself and its prodomain, ensuring their combined retrograde presynaptic action after PAR1 activation.

About the authors

A. I. Molchanova

Moscow State University, Biological Faculty

Moscow, Russia

E. I. Shepelyov

Moscow State University, Biological Faculty

Moscow, Russia

A. E. Gaydukov

Moscow State University, Biological Faculty

Email: gaydukov@gmail.com
Moscow, Russia

References

  1. Je H.S., Yang F., Ji Y., Nagappan G., Hempstead B.L., Lu B. // Proc. Natl. Acad. Sci. U. S. A. 2012. V. 109. № 39. P. 15924–15929.
  2. Huang E.J., Reichardt L.F. // Annu. Rev. Neurosci. 2001. V. 24. № Volume 24, 2001. P. 677–736.
  3. Wang C.S., Kavalali E.T., Monteggia L.M. // Cell. 2022. V. 185. № 1. P. 62–76.
  4. Kowiański P., Lietzau G., Czuba E., Waśkow M., Steliga A., Moryś J. // Cell. Mol. Neurobiol. 2018. V. 38. № 3. P. 579–593.
  5. Hurtado E., Cilleros V., Nadal L., Simó A., Obis T., Garcia N., Santafé M.M., Tomàs M., Halievski K., Jordan C.L., Et Al. // Front. Mol. Neurosci. 2017. V. 10. P. 147.
  6. Polishchuk A., Cilleros-Mañé V., Balanyà-Segura M., Just-Borràs L., Forniés-Mariné A., Silvera-Simón C., Tomàs M., Jami El Hirchi M., Hurtado E., Tomàs J., Et Al. // Cell Commun. Signal. 2024. V. 22. № 1. P. 371.
  7. Gaydukov A., Bogacheva P., Tarasova E., Molchanova A., Miteva A., Pravdivceva E., Balezina O. // Cells. 2019. V. 8. № 7. P. 762.
  8. Gaydukov A.E., Akutin I.A., Bogacheva P.O., Balezina O.P. // Biochem. Mosc. Suppl. Ser. Membr. Cell Biol. 2018. V. 12. № 1. P. 33–42.
  9. Mizui T., Ishikawa Y., Kumanogoh H., Lume M., Matsumoto T., Hara T., Yamawaki S., Takahashi M., Shiosaka S., Itami C., Et Al. // Proc. Natl. Acad. Sci. 2015. V. 112. № 23. P. E3067–E3074.
  10. Kojima M., Matsui K., Mizui T. // Cell Tissue Res. 2019. V. 377. № 1. P. 73–79.
  11. Bogacheva P.O., Molchanova A.I., Pravdivceva E.S., Miteva A.S., Balezina O.P., Gaydukov A.E. // Front. Cell. Neurosci. 2022. V. 16. P. 866802.
  12. Molchanova A.I., Balezina O.P., Gaydukov A.E. // J. Evol. Biochem. Physiol. 2024. V. 60. № 1. P. 363–379.
  13. Bogacheva P.O., Potapova D.A., Gaydukov A.E. // Neurochem. Res. 2025. V. 50. № 2. P. 104.
  14. Kolarow R., Brigadski T., Lessmann V. // J. Neurosci. 2007. V. 27. № 39. P. 10350–10364.
  15. Leßmann V., Brigadski T. // Neurosci. Res. 2009. V. 65. № 1. P. 11–22.
  16. Wang M., Xie Y., Qin D. // Brain Res. Bull. 2021. V. 166. P. 172–184.
  17. Aby K., Antony R., Li Y. // Biology. 2023. V. 12. № 7. P. 903.
  18. Aby K., Antony R., Yang T., Longo F.M., Li Y. // Int. J. Mol. Sci. 2025. V. 26. № 1. P. 401.
  19. Vansaun M., Herrera A.A., Werle M.J. // J. Neurocytol. 2003. V. 32. № 9. P. 1129–1142.
  20. Seidah N.G., Benjannet S., Pareek S., Chrétien M., Murphy R.A. // Febs Lett. 1996. V. 379. № 3. P. 247–250.
  21. Ivachtchenko A.V., Khvat A.V., Shkil D.O. // Int. J. Mol. Sci. 2024. V. 25. № 17. P. 9199.
  22. Gulin J.E.N., Bisio M., García-Bournissen F. // Lab. Anim. Res. 2020. V. 36. № 1. P. 37.
  23. Vanhecke D., Bugada V., Steiner R., Polić B., Buch T. // Lab Anim. 2024. V. 53. № 8. P. 205–214.
  24. Mclachlan E.M., Martin A.R. // J. Physiol. 1981. V. 311. № 1. P. 307–324.
  25. Lanuza M.A., Garcia N., González C.M., Santafé M.M., Nelson P.G., Tomas J. // J. Neurosci. Res. 2003. V. 73. № 1. P. 10–21.
  26. Lanuza M.A., Besalduch N., Garcia N., Sabaté M., Santafé M.M., Tomàs J. // J. Neurosci. Res. 2007. V. 85. № 4. P. 748–756.
  27. Malik S.C., Sozmen E.G., Baeza-Raja B., Le Moan N., Akassoglou K., Schachtrup C. // Trends Pharmacol. Sci. 2021. V. 42. № 9. P. 772–788.
  28. Van Hove I., Lemmens K., Van De Velde S., Verslegers M., Moons L. // J. Neurochem. 2012. V. 123. № 2. P. 203–216.
  29. Wiera G., Nowak D., Hove I. Van, Dziegiel P., Moons L., Mozrzymas J.W. // J. Neurosci. 2017. V. 37. № 5. P. 1240–1256.
  30. Zhang Y., Gao X., Bai X., Yao S., Chang Y.-Z., Gao G. // Transl. Neurodegener. 2022. V. 11. № 1. P. 39.
  31. Douglas L.E.J., Reihill J.A., Ho M.W.Y., Axten J.M., Campobasso N., Schneck J.L., Rendina A.R., Wilcoxen K.M., Martin S.L. // Cell Chem. Biol. 2022. V. 29. № 6. P. 947-957.E8.
  32. Luo B., Huang J., Lu L., Hu X., Luo Z., Li M. // J. Neurosci. Res. 2014. V. 92. № 7. P. 893–903.
  33. Fujita T., Liu T., Nakatsuka T., Kumamoto E. // J. Neurophysiol. 2009. V. 102. № 1. P. 312–319.
  34. Brigadski T., Leßmann V. // Cell Tissue Res. 2020. V. 382. № 1. P. 15–45.
  35. Jia J., Wang L., Zhou Y., Zhang P., Chen X. // Front. Physiol. 2025. V. 15. P. 1501957.
  36. Zhang J., Kwan H.-L.R., Chan C.B., Lee C.W. // Cell Death Differ. 2025. V. 32. № 3. P. 546–560.
  37. Fujimura H., Altar C.A., Chen R., Nakamura T., Nakahashi T., Kambayashi J., Sun B., Tandon N.N. // Thromb. Haemost. 2002. V. 87. № 4. P. 728–34.
  38. Tamura S., Suzuki H., Hirowatari Y., Hatase M., Nagasawa A., Matsuno K., Kobayashi S., Moriyama T. // Thromb. Res. 2011. V. 128. № 5. P. E55–E61.
  39. Kim H.N., Triplet E.M., Radulovic M., Bouchal S., Kleppe L.S., Simon W.L., Yoon H., Scarisbrick I.A. // Glia. 2021. V. 69. № 9. P. 2111–2132.
  40. Festoff B.W., D’andrea M.R., Citron B.A., Salcedo R.M., Smirnova I.V., Andrade-Gordon P. // Mol. Med. 2000. V. 6. № 5. P. 410–429.
  41. Zhong Z., Ilieva H., Hallagan L., Bell R., Singh I., Paquette N., Thiyagarajan M., Deane R., Fernandez J.A., Lane S., Et Al. // J. Clin. Invest. 2009. V. 119. № 11. P. 3437–3449.
  42. Festoff B.W., Citron B.A. // Front. Neurol. 2019. V. 10. P. 59.
  43. Lee R., Kermani P., Teng K.K., Hempstead B.L. // Science. 2001. V. 294. № 5548. P. 1945–1948.
  44. Werle M.J., Vansaun M. // J. Neurocytol. 2003. V. 32. № 5. P. 905–913.
  45. Je H.S., Yang F., Ji Y., Potluri S., Fu X.-Q., Luo Z.-G., Nagappan G., Chan J.P., Hempstead B., Son Y.-J., Et Al. // J. Neurosci. 2013. V. 33. № 24. P. 9957–9962.
  46. Sachan V., Lodge R., Mihara K., Hamelin J., Power C., Gelman B.B., Hollenberg M.D., Cohen É.A., Seidah N.G. // Cell Death Differ. 2019. V. 26. № 10. P. 1942–1954.
  47. Aby K., Antony R., Eichholz M., Srinivasan R., Li Y. // Life Sci. 2021. V. 286. P. 120067.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).