Formation of Nanoclusters in Zinc-Implanted Crystalline Quartz

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

The results of the synthesis of nanoclusters of metallic zinc and its oxide in crystalline quartz implanted with 64Zn+ ions with a dose of 5 × 1016 cm–2 and energy of 40 keV and annealed in an oxygen atmosphere in the temperature range 400–900°C are presented. Scanning electron microscopy combined with energy-dispersive spectroscopy, as well as Auger electron spectroscopy and photoluminescence, were used for the study. After implantation, separate nanoclusters of metallic zinc with a size of less than 1 µm were fixed on the surface and in the near-surface layer of quartz. It was established that, during annealing, the sample underwent a transition from the phase of metallic Zn to the phases of its oxide ZnO and silicate Zn2SiO4. After annealing at 700°C, which is the most optimal for obtaining the ZnO phase, zinc oxide nanoclusters smaller than 500 nm in size were formed in the near-surface layer of quartz. A peak in the form of a doublet at a wavelength of 370 nm was observed in the photoluminescence spectrum due to exciton luminescence in zinc oxide. After annealing at 800°C, the ZnO phase degraded and the zinc silicate phase Zn2SiO4 was formed.

Негізгі сөздер

Авторлар туралы

V. Privezentsev

Scientific Research Institute for System Analysis RAS

Хат алмасуға жауапты Автор.
Email: v.privezentsev@mail.ru
Russia, 117218, Moscow

A. Firsov

Scientific Research Institute for System Analysis RAS

Email: v.privezentsev@mail.ru
Russia, 117218, Moscow

V. Kulikauskas

Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics

Email: v.privezentsev@mail.ru
Russia, 119991, Moscow

V. Zatekin

Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics

Email: v.privezentsev@mail.ru
Russia, 119991, Moscow

A. Tereshchenko

Osipyan Institute of Solid State Physics RAS

Email: v.privezentsev@mail.ru
Russia, 142432, Moscow region, Chernogolovka

Әдебиет тізімі

  1. Кузьмина И.П., Никитенко В.А. Оксид цинка. Получение и свойства. M.: Нaукa, 1984. 166 с.
  2. Özgür Ü., Alivov Ya. I., Liu C. et al. // J. Appl. Phys. 2005. V. 98. P. 041301.
  3. Litton C.W, Collins T.C., Reynolds D.S, Zinc Oxide Materials for Electronic and Optoelectronic Device Application. Chichester: Wiley, 2011.
  4. Amekura H., Kishimoto N. Toward Functional Nanomaterials // Lecture Notes in Nanoscale Science and Technology / Ed. Wang Zh.M. 2009. V. 5.
  5. Liu Y.X., Liu Y.C., Shen D. et al. // J. Cryst. Growth. 2002. V. 240. P. 152.
  6. Zatsepin D., Zatsepin A., Boukhvalov D.W. et al. // J. Non-Cryst. Solids. 2016. V. 432. P. 183.
  7. Straumal B.B., Mazilkin A.A., Protasova S.G. et al. // Phys. Rev. B. 2009. V. 79. P. 205206.
  8. Smestad G.P., Gratzel M. // J. Chem. Educ. 1998. V. 75. P. 752.
  9. Urfa Y., Çorumlu V., Altındal A. // Mater. Chem. Phys. 2021. V. 264. P. 124473.
  10. Sirelkhatim S., Mahmud A., Seeni N.H.M., Kaus L.C., Ann S.K., ohd Bakhori, Hasan H., Mohamad D. // Nano-Micro Lett. 2015. V. 7. P. 219.
  11. Inbasekaran S., Senthil R., Ramamurthy G., Sastry T.P. // Intern. J. Innov. Res. Sci. Engin. Technol. 2014. V. 3. P. 8601.
  12. Jiang C.Y., Sun X.W., Lo G.Q. et al. // Appl. Phys. Lett. 2007. V. 90. P. 263501.
  13. Li C., Yang Y., Sun X.W. et al. // Nanotechnology. 2007. V. 18. P. 135604.
  14. Chu S., Olmedo M., Yang Zh. et al. // Appl. Phys. Lett. 2008. V. 93. P. 181106.
  15. Amekura H., Ohnuma M., Kishimoto N. et al. // J. Appl. Phys. 2008. V. 104. P. 114309.
  16. Privezentsev V.V., Makunin A.V., Batrakov A.A. et al. // Semiconds. 2018. V. 52. P. 645.
  17. Броудай И., Мерей Дж. Физические основы микротехнологии. М.: Мир, 1985. 496 с.
  18. Ziegler J.F., Biersack J.P. SRIM 2008 (http:// www.srim.org).
  19. Chen Y., Bagnall D.M., Koh H.J. et al. // J. Appl. Phys. 1998. V. 84. P. 3912.
  20. Amekura H., Umeda N., Sakuma Y. et al. // Appl. Phys. Lett. 2005. V. 87. P. 013109.

© В.В. Привезенцев, А.А. Фирсов, В.С. Куликаускас, В.В. Затекин, А.Н. Терещенко, 2023

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).