Features of Nanostructured Mx−Pt1−x (M = Fe, Co, Ni) Solid Solutions Obtained by Precursor Reduction in Aqua Solutions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

It is shown that there was a preferential formation of nanocrystals of solid solutions M–Pt of face-centered cubic structure when co-reduction of metal precursors (M2+ (M = Fe, Co, Ni) and [PtCl6]2−) by alkaline hydrazine hydrate solution was. It was demonstrated by methods of elemental analysis, X-ray diffraction, and high-resolution transmission electron microscopy. Content of Fe and Co in the phase of solid solutions was ≈ 11.5 ± 0.5 and ≈ 16.9 ± 1 at. %, respectively. By comparing the results of high-resolution transmission electron microscopy, elemental analysis, X-ray phase analysis, and X-ray structural analysis, it was established that in the Fe—Pt and Co—Pt systems, in addition to the M—Pt solid solutions with a face-centered cubic structure revealed by X-ray diffraction methods, nanodispersed metallic phases, practically inaccessible for registration, are formed in the regions above and below the limiting Fe and Co contents. However, as for nanostructured Ni—Pt system, there was not upper limit of Ni content in the solid solutions of face-centered cubic structure, up to 40 at. %. Therefore, the phase compositions were represented by two types of face-centered cubic structures, i.e. pure Ni phase and solid solution phases, with Ni content of 10–12 and 40 at. %. The key points about the nature of these structure-phase features reviewed in the article.

About the authors

A. N Popova

Federal Research Center for Coal and Coal Chemistry SB RAS

Author for correspondence.
Email: h991@yandex.ru
Kemerovo, Russia

N. S Zakharov

Federal Research Center for Coal and Coal Chemistry SB RAS

Email: h991@yandex.ru
Kemerovo, Russia

Yu. A Zakharov

Federal Research Center for Coal and Coal Chemistry SB RAS

Email: h991@yandex.ru
Kemerovo, Russia

E. S Parshkova

Federal Research Center for Coal and Coal Chemistry SB RAS

Email: h991@yandex.ru
Kemerovo, Russia

I. N Tikhonova

Federal Research Center for Coal and Coal Chemistry SB RAS

Email: h991@yandex.ru
Kemerovo, Russia

V. M Pugachev

Federal Research Center for Coal and Coal Chemistry SB RAS

Email: h991@yandex.ru
Kemerovo, Russia

V. I Krasheninin

Federal Research Center for Coal and Coal Chemistry SB RAS

Email: h991@yandex.ru
Kemerovo, Russia

References

  1. Singamaneni S., Bliznyuk V.N., Binek C., Tsymbal E.Y. // J. Mater. Chem. 2011. V. 21. № 42. P. 16819. https://www.doi.org/10.1039/c1jm11845e
  2. Ferrando R., Jellinek J., Johnston R.L. // Chem. Rev. 2008. V. 108. № 3. P. 845. https://www.doi.org/10.1021/cr040090g
  3. Shuttleworth I. // Magnetochemistry. 2020. V. six. № 4. P. 61. https://www.doi.org/10.3390/magnetochemistry6040061
  4. Schneider S., Pohl D., Löffler S., Rusz J., Kasinathan D., Schattschneider P., Schultz L., Rellinghaus B. // Ultramicroscopy. 2016. V. 171. P. 186. https://www.doi.org/10.1016/j.ultramic.2016.09.00
  5. Luo H.B., Xia W.X., Ruban A.V., Du J., Zhang J., Liu J.P., Yan A. // J. Phys.: Condensed Matter. 2014. V. 26. № 38. P. 386002. https://www.doi.org/10.1088/0953-8984/26/38/386002
  6. Koh I., Josephson L. // Sensors. 2009. V. 9. № 10. P. 8130. https://www.doi.org/10.3390/s91008130
  7. Rocha-Santos T.A.P. // Trends in Analytical Chemistry. 2014. V. 62. P. 28. https://www.doi.org/10.1016/j.trac.2014.06.016
  8. Krishnan K.M., Pakhomov A.B., Bao Y., Blomqvist P., Chun Y., Gonzales M., Griffin K., Roberts B.K. // J. Mater. Sci. 2006. V. 41. P. 793. https://www.doi.org/10.1007/s10853-006-6564-1
  9. Chrobak A. // Materials. 2022. V. 15. № 19. C. 6506. https://www.doi.org/10.3390/ma15196506
  10. Chen X., Zhang S., Li C., Lui Z., Sun X., Cheng S., Zakharov D.N., Hwang S., Zhu Y., Fang J., Wang G., Zhou G. // Proceedings of the National Academy of Sciences. 2022. V. 119. № 14. P. e2117899119. https://www.doi.org/10.1073/pnas.2117899119
  11. Li J., Sun S. // Accounts of Chemical Research. 2019. V. 52. № 7. P. 2015. https://www.doi.org/10.1021/acs.accounts.9b00172
  12. Xiao W., Lei W., Gong M., Xin H.L., Wang D. // ACS Catalysis. 2018. V. 8. № 4. P. 3237. https://www.doi.org/10.1021/acscatal.7b04420
  13. Konorev S. I., Kozubski R., Albrecht M., Vladymyrskyi I.A. // Computational Materials Science. 2021. V. 192. C. 110337. https://www.doi.org/10.1016/j.commatsci.2021.110337
  14. Pagachev V.M., Zakharov Yu.A., Popova A.N., Russakov D.M., Zakharov N.S. // J. Phys.: Conf. Ser. 2021. V. 1749. № 1. P. 012036. https://www.doi.org/10.1088/1742-6596/1749/1/012036
  15. Zakharov Y.A., Popova A.N., Pagachev V.M., Zakharov N.S., Tikhonova I.N., Russakov D.M., Dodonov V.G., Yakubik D.G., Ivanova N.V., Sadykova L.R. // Materials. 2023. V. 16. № 23. P. 7312. https://www.doi.org/10.3390/ma16237312
  16. Yang B., Asta M., Mryasov O.N., Klemmer T.J., Chantrell R.W. // Scripta Materialia. 2005. V. 53. № 4. P. 417. https://www.doi.org/10.1016/j.scriptamat.2005.04.038
  17. Alsad A.M., Ahmad A.A., Qatuous H.A. // Heliyon. 2019. V. 5. № 9. https://www.doi.org/10.1016/j.heliyon.2019.e02433
  18. Shuttleworth I.G. // Heliyon. 2018. V. 4. № 12. https://www.doi.org/10.1016/j.heliyon.2018.e01000
  19. Rossi L.M., Costa N.J.S., Silva F.P., Wojcieszak R. // Green Chemistry. 2014. V. 16. № 6. P. 2906. https://www.doi.org/10.1039/c4ge00164h
  20. Zakharov N.S., Tikhonova I.N., Zakharov Yu.A., Popova A.N., Pagachev V.M., Russakov D.M. // Lett. Mater. 2022. V. 12. № 48. P. 480. https://www.doi.org/10.22226/2410-3535-2022-4-480-485
  21. Zakharov N., Tikhonova I., Popova A., Pagachev V., Dodonov V., Prosvirin I., Krasheninin V., Zakharov Y. // BIO Web of Conferences. 2024. V. 93. P. 04012. https://www.doi.org/10.1051/bioconf/20249304012
  22. Zakharov Yu.A., Tikhonova I.N., Pagachev V.M., Popova A.N., Zakharov N.S., Dodonov V.G., Russakov D.M. // Chemistry for Sustainable Development. 2023. V. 31. № 5. P. 511. https://www.doi.org/10.15372/CSD2023496
  23. PDF-2 Database (2024) International Center for Diffraction Data, Newton Square, PA. https://www.icdd.com/pdf-2
  24. Zakharov Y.A., Pagachev V.M., Korchuganova K.A., Ponomarchuk Yu.V., Larichev T.A. // J. Struct. Chem. 2020. V. 61. P. 994. https://www.doi.org/10.1134/s0022476620060219
  25. Esteves G., Ramos K., Fancher C. M., Jones J.L. LIPRAS: Line-Profile Analysis Software. Preprint https://www.Researchgate.net/publication/316985889_LIPRAS_Line-Profile_Analysis_Software. 2017. https://www.doi.org/10.13140/RG.2.2.29970.25282/3
  26. ImageJ (2018) National Institutes of Health, USA. https://imagej.net/ij/. Cited 18.06.2024.
  27. Xiao T., Yang Q., Yu J., Xiong Z., Wu W. // Nanomaterials. 2021. V. 11. № 1. P. 131. https://www.doi.org/10.3390/nano11010131
  28. Hu Z., Dai Z., Hu X., Yang B., Liu Q., Gao C., Zheng X., Yu Y. // J. Nanobiotechnology. 2019. V. 17. P. 1. https://www.doi.org/10.1186/s12951-019-0465-3
  29. Shukoor M.I., Natalio F., Tahir M.N., Ksenofontov V., Therese H.A., Theato P., Schröder H.C., Müller W.E.G., Tremel W. // Chem. Comm. 2007. № 44. P. 4677. https://www.doi.org/10.1039/b707978h

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).