Properties of Interface Structures Based on Oxidized Lead Selenide

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this work, single-phase monocrystalline and thin-film samples of lead selenide were synthesized. Methods have been developed for the creation of surface oxidized lead selenide with a conductivity different from the base PbSe. Using oxidized lead selenide as an interface, Ag/Pb3OSeO3/PbSe heterostructures were made, demonstrating stable memristive characteristics. The obtained heterojunctions were investigated for the detection of resistive switching, the volt-ampere characteristics and the temperature dependence of the resistance of the structures were measured. By changing the external parameters: frequency, magnitude of the electric field voltage applied to the heterocontact, different metastable states are realized. Dynamic effects were studied, and the transition times from one metastable state to another were determined. Single crystal-based memristors were more stable than film structures, reproducible characteristics in single crystal-based memristors were observed for several months.

About the authors

N. A Tulina

Osippan Institute of Solid State Physics RAS

Author for correspondence.
Email: tulina@issp.ac.ru
Chernogolovka, Russia

A. N Rossolenko

Osippan Institute of Solid State Physics RAS

Email: tulina@issp.ac.ru
Chernogolovka, Russia

I. M Shmytko

Osippan Institute of Solid State Physics RAS

Email: tulina@issp.ac.ru
Chernogolovka, Russia

I. Y Borisenko

Institute of Problems of Microelectronics Technology and Especially Pure Materials RAS

Email: tulina@issp.ac.ru
Chernogolovka, Russia

D. N Borisenko

Osippan Institute of Solid State Physics RAS

Email: tulina@issp.ac.ru
Chernogolovka, Russia

N. N Kolesnikov

Osippan Institute of Solid State Physics RAS

Email: tulina@issp.ac.ru
Chernogolovka, Russia

References

  1. Klie R.F., Buban J.P., Valera M., Franceschetti A., Jooss C., Zhu Y. // Nature. 2005. V. 435. P. 475. https://doi.org/10.1038/ncomms4404
  2. Straumal B.B., Protasova S.G., Mazilkin A.A., Goerin E., Schütz G., Straumal P.B. and Baretzky B. // Beilstein J. Nanotechnol. 2016. V. 7. P. 1936. https://doi.org/10.3762/bjnano.7.185
  3. Hassan A.M., Khalaf A.F., Sayed Kh.S., Li H.H., Chen Y. // IEEE Trans. Nanotechnol. 2016. V. 15. P. 484. https://doi.org/10.1109/EMBC.2018.8512868
  4. Straumal B.B., Mazilkin A.A., Protasova S.G., Stakhanova S.V., Straumal P.B., Bulatov M.F., Tietze Th., Goering E., Baretzky B. // Rev. Adv.Mater. Sci. 2015. V. 93. Iss. 10–12. P. 41. https://doi.org/10.1080/14786435.2012.736693
  5. Panin G.N. // Electronics. 2022. V. 11. P. 619. https://doi.org/10.3390/electronics11040619
  6. Wang W., Panin G.N., Fu X., Zhang L., Ilanchezhiyan P., Pelenovich V.O., Fu D., Kang T.W. // Sci. Rep. 2016. V. 6. P. 31224. https://doi.org/10.1038/srep31224
  7. Fu X., Zhang L., Cho H.D., Kang T.W., Fu D., Lee D., Lee S.W., Li L., T. Qi Q., Chan A.S., Yunusov Z.A., Panin G.N. // Small. 2019. V. 15. Iss. 45. P. 1903809. https://doi.org/10.1002/smll.201903809
  8. Fu X., Li T., Cai B., Miao J., Panin G.N., Ma X., Wang J., Jiang X., Li Q., Dong Y., Hao Ch., Sun J., Xu H., Zhao Q., Xia M., Song B., Chen F., Chen X., Lu W., Hu W. // Light Sci. Appl. 2023. V. 12. P. 39. https://doi.org/10.1038/s41377-023-01079-5
  9. Yin J., Tan Zh., Hong H., Jinxiong Wu, Hongtao Yuan, Liu Y., Chen Ch., Tan C., Yao F., Li T., Chen Y., Liu Zh., Liu K., Peng H. // Nature Comm. 2018. V. 9. P. 3311. https://doi.org/10.1038/s41467-018-05874-2
  10. Равич Ю.Н., Ефимова Б.А., Смирнов Н.А. Методы исследования полупроводников в применении к халькогенидам свинца PbTe, PbSe и PbS. М.: Наука, 1968. 383 с.
  11. Kasivan V., Dashevsky Z., Schwarz C.M., Flitsiyan E., Chernyak L., Khokhlov D. // JAP. 2012. V. 112. P. 086101. https://doi.org/10.1063/1.4759011
  12. Зимин С.П., Амиров И.Н., Наумов В.В. // ФГП. 2016. Т. 50. С. 1146. https://doi.org/10.21883/PJTF.2018.12.46288.17277
  13. Sun X., Gao K., Pang X., Yang H., Volinsky A.A. // Thin Solid Films. 2015. V. 592. P. 59. https://doi.org/10.1016/j.tsf.2015.09.009
  14. Peng H., Song J.-H., Kanatzidis M.G., Freeman A.J. // Phys. Rev. B. 2011. V. 84. P. 125207. https://doi.org/10.1103/PhysRevB.84.125207
  15. Поповкин Е.А., Симонов Ю.П. // Журнал неорганической химии. 1965. Т. 10. С. 1636.
  16. Sheldrick G.M. // Structural Chemistry. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229644024218
  17. Wang Ch., Wu H., Gao B., Zhang T., Yang Y., Wang H.Q. // Microelectronic Engineering. 2017. V. 187–188. P. 121. https://doi.org/10.1016/j.mec.2017.11.003
  18. Zahoor F., Zulkifit T.Z.A., Khanday F.A. // Nanoscale Res. Lett. 2020. V. 15. P. 90. https://doi.org/10.1186/s11671-020-03299-9
  19. Szot K., Speier W., Bihlmayer G., Waser R. // Nat. Mater. 2006. V. 5. P. 312.
  20. Wase R., Ditmann R., Statkov G., Szot K. // Adv. Mater 2009. V. 21. 2632. https://doi.org/10.1002/adma.200900375
  21. Yang J.J., Pickett M.D., Li X., Ohlberg D.A., Stewart D.R., Williams R.S. // Nat. Nanotechnol. 2008. V. 3. P. 429. https://doi.org/10.1038/nnano.2008.160
  22. Marchewka A., Waser R., Menze S. // International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), 2015. P. 297.
  23. Tulina N.A., Ivanov A.A. // J. Supercond. Novel Magn. 2020. V. 33. P. 2279. https://www.doi.org/10.1007/s10948-019-05383-3
  24. Tulina N.A., Borisenko I.Yu., Siroikin V.V. // SSC. 2013. V. 17. P. 48. https://www.doi.org/10.17073/1609-3577-2019-4-246-252

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).