Non-Destructive Determination of Qualitative and Quantitative Parameters of Coatings Based on Reflected Electron Spectroscopy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The most important condition for the stable operation of controlled thermonuclear fusion facilities is solving the "first wall" problems, which include the analysis of the interaction between thermonuclear plasma and in-vessel materials. Within this framework, the most pressing issue is the analysis of depth profiles of structural materials interacting with the plasma. This task is related to the fact that to reduce the average atomic number of the elements entering the plasma discharge, coatings made of low atomic number materials, such as lithium and boron, are used on plasma-facing components. This work presents a methodology for reflected electron spectroscopy that enables the depth profile analysis of targets with complex composition based on the interpretation of differential energy and angle spectra of reflected electrons. A method for calculating the energy spectra of electrons reflected from multi-component heterogeneous targets is introduced, based on the method of partial intensities, which has been repeatedly tested in numerous studies. Path length distribution function, which is the basis for the method of partial intensities and previously determined only within the framework of Monte Carlo simulations, has been established within an analytical approach. It is noted that to identify the depth profile of the distribution of components in the investigated target, a fitting procedure is employed, which is based on repeatedly solving the forward problem of calculating spectra of electrons reflected from a target of complex composition. A good agreement between the calculations and experimental results has been demonstrated. The simplicity of the experimental implementation of the reflected electron spectroscopy method is emphasized, as it does not require high-energy resolution equipment, since information about the target is extracted from the dome part of the reflected electron spectrum.

About the authors

V. P Afanas'ev

National Research University "Moscow Power Engineering Institute"

Email: v.af@mail.ru
Moscow, Russia

L. G Lobanova

National Research University "Moscow Power Engineering Institute"

Email: lida.lobanova.2017@mail.ru
Moscow, Russia

A. M Zagorodnaya

National Research University "Moscow Power Engineering Institute"

Moscow, Russia

M. A Semenov-Shefov

National Research University "Moscow Power Engineering Institute"

Moscow, Russia

References

  1. Hoffman S. Auger and X-Ray Photoelectron Spectroscopy in Material Science. Berlin Heidelberg: Springer, 2012. 528 p.
  2. Wei-Kan Chy, Mayer J.W., Nicolet M.A. Backscattering Spectrometry. N.Y.: Academic Press, 1978. 384 p.
  3. Машкова Е.С., Молчанов В.А. Применение рассеяния ионов для анализа твердых тел. М.: Энергоатомиздат, 1995. 174 с.
  4. Schwarz-Selinger T., von Keudell A., Jacob W. // J. Appl. Phys. 1999. V. 86. P. 3988. https://www.doi.org/10.1063/1.371318
  5. Афанасьев В.П., Лобанова Л.Г. // Физика плазмы. 2023. Т. 49. С. 1034. https://www.doi.org/10.31857/S0367292123600498
  6. Aleksandrov A.F., Luk’Yanov F.A., Sennov R.A., Ditsman S.A., Rau E.I., Orlikovskii N.A. // Russ. Microelectron. 2010. V. 39. P. 303. https://www.doi.org/10.1134/S1063739710050021
  7. Rau E.I., Tatarintsev A.A., Zykova E.Yu. // Micron. 2023. V. 173. P. 103516. https://www.doi.org/10.1016/j.micron.2023.103516
  8. Rau E.I., Reimer L. // Scanning. 2001. V. 23. P. 235. https://www.doi.org/10.1002/sca.4950230403
  9. Афанасьев В.П., Лубенченко А.В., Паволоцкий А.Б., Федорович С.Д. // ЖТФ. 2002. Т. 72. С. 100.
  10. Афанасьев В.П., Федорович С.Д., Лубенченко А.В. // Письма ЖТФ. 1995. Т. 21. С. 85.
  11. Afanas’ev V.P., Lubenchenko A.V., Lukashevsky M.V., Norell M., Pavolotsky A.B. // J. Appl. Phys. 2007. V. 101. P. 064912. https://www.doi.org/10.1063/1.2716385
  12. Salvat-Pujol F., Werner W.S.M. // Phys. Rev. B: Condens. Matter. 2011. V. 83. P. 195416. https://www.doi.org/10.1103/PhysRevB.83.195416
  13. Afanas’ev V.P., Efremenko D.S., Kaplya P.S. // J. Electron. Spectrosc. Relat. Phenom. 2016. V. 210. P. 16. https://www.doi.org/10.1016/j.elspec.2016.04.006
  14. Ландау Л.Д. Собрание трудов. Москва: Наука, 1969. 512 с.
  15. Werner W.S.M. // Phys. Rev. B: Condens. Matter. 1997. V. 55. P. 14925. https://www.doi.org/10.1103/PhysRevB.55.14925
  16. Afanas`ev V.P., Fedorovich S.D., Lubenchenko A.V., Ryjov A.A., Esimov M.S. // Z. Physik B Condensed Matter. 1994. V. 96. P. 253. https://www.doi.org/10.1007/BF01313291
  17. Ding Z.-J., Nagatomi T., Shimizu R., Goto K. // Surf. Sci. 1995. V. 336. № 3. P. 397. https://www.doi.org/10.1016/0039-6028(95)00537-4
  18. Goto K., Sakakibara N., Takeichi Y., Sakai Y. // Surf. Interface Anal. 1994. V. 22. P. 75. https://www.doi.org/10.1002/sia.740220119
  19. Jablonski A., Salvat F., Powell C.J. (2023) NIST Electron Elastic-Scattering Cross-Section Database, Version 5.0, User’s Guide. National Institute of Standards and Technology, Gaithersburg, MD. https://doi.org/10.6028/NIST.NSRDS.64-2023
  20. Afanas’ev V.P., Gryazev A.S., Efremenko D.S., Kaplya P.S. // Vaccum. 2017. V. 136. P. 146. https://www.doi.org/10.1016/j.vacuum.2016.10.021
  21. Werner W.S.M., Glantschnig K., Ambrosch-Draxl C. // J. Phys. Chem. Ref. 2009. V. 38. P. 1013. https://www.doi.org/10.1063/1.3243762
  22. Калашников Н.П., Ремизович В.С., Рязанов М.И. Столкновения быстрых заряженных частиц в телах. М.: Атомиздат, 1980. 272 с.
  23. Salvat F., Jablonski A., Powell C.J. // Comput. Phys. Commun. 2005. V. 165. № 2. P. 157. https://www.doi.org/10.1016/j.cpc.2004.09.006
  24. Tanuma S., Powell C.J., Penn D.R. // Surf. Interface Anal. 2005. V. 37. P. 1. https://www.doi.org/10.1002/sia.1997

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).