Formation and Relaxation of Elastic Stress in Radial InAs/InP Nanoheterostructures

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this work, oriented arrays of nanowires of InAs and InAs/InP core-shell nanoheterostructures based on NWs, synthesized by molecular beam epitaxy, were studied. A high surface density of NWs in the array was demonstrated (5–10 NWs/μm2). High-resolution transmission electron microscopy data showed that with shell thicknesses up to 15–20 nm, pseudomorphic growth of InP is possible on the side faces of InAs NWs, and with shell thicknesses greater than 20 nm, complete relaxation of elastic stresses occurs. It was found that in radial heterostructured NWs with a thin InP shell, defects are formed only in the apex region, while no defect formation is observed at the radial heterointerface.

About the authors

S. V Fedina

Alferov University; St. Petersburg State Polytechnic University

Email: fedina.serg@yandex.ru
Saint Petersburg, Russia; Saint Petersburg, Russia

V. V Fedorov

St. Petersburg State Polytechnic University

Saint Petersburg, Russia

A. K Kaveev

Ioffe Institute

Saint Petersburg, Russia

A. S Goltaev

Alferov University

Saint Petersburg, Russia

D. V Miniv

Alferov University

Saint Petersburg, Russia

D. A Kirilenko

Ioffe Institute

Saint Petersburg, Russia

I. S Mukhin

Alferov University; St. Petersburg State Polytechnic University

Saint Petersburg, Russia; Saint Petersburg, Russia

References

  1. Abrand A., Baboli M. A., Fedorenko A., Polly S. J., ManfredaSchulz E., Hubbard S.M., Mohseni P.K. // ACS Appl. Nano Mater. 2022. № 5. P. 840. https://www.doi.org/10.1021/acsanm.1c03557
  2. Song Ch., Wang P., Qian Y., Zhou G., Nötzel R. // Opt. Express. 2020. V. 28. № 18. P. 25750. https://www.doi.org/10.1364/OE.400590
  3. Зи С.М. Физика полупроводниковых приборов. М/: Мир, 1973. 456 с.
  4. Martyniuk P., Antoszewski J., Martyniuk M., Faraone L., Rogalski A. // Appl. Phys. Rev. 2014. V. 1. № 4. https://www.doi.org/10.1063/1.4896193
  5. Li Z., He Z., Xi C., Zhang F., Huang L., Yu Y., Tan H. H., Jagadish C., Fu L. // Adv. Mater. Technol. 2023. V. 8. P. 2202126. https://www.doi.org/10.1002/admt.202202126
  6. Lauhon L.J., Gudiksen M.S., Wang D., Lieber C.M. // Nature. 2002. V. 420. P. 57. https://www.doi.org/10.1038/nature01141
  7. Tomioka K., Tanaka T., Hara S., Hiruma K., Fukui T. // IEEE J. Sel. Top. Quantum Electron. 2011. № 17. P. 1112. https://www.doi.org/10.1109/JSTQE.2010.2068280
  8. Titova L.V., Hoang T.B., Jackson H.E., Smith L.M., Yarrison-Rice J.M., Kim Y., Joyce H. J., Tan H.H., Jagadish C. // Appl. Phys. Lett. 2006. V. 89 P. 173126. https://www.doi.org/10.1063/1.2364885
  9. Jiang X., Xiong Q., Nam S., Qian F., Li Y., Lieber C.M. // Nano Lett. 2007. V. 7. P. 3214. https://www.doi.org/10.1021/nl072024a
  10. Van Tilburg J.W.W.V., Algra R.E., Immink W.G.G., Verheijen M., Bakkers E.P.A.M., Kouwenhoven L.P. // Semicond. Sci. Technol. 2010. V. 25 P. 024011. https://www.doi.org/10.1088/0268-1242/25/2/024011
  11. Dayeh S.A., Tang W., Boioli F., Kavanagh K.L., Zheng H., Wang J., Mack N.H., Swadener G., Huang J.Y., Miglio L., Tu K.-N., Picraux S.T. // Nano Lett. 2013. V. 13 P. 1869. https://www.doi.org/10.1021/nl3022434
  12. Kavanagh K.L., Saveliev I., Blumin M., Swadener G., Ruda H E. // J. Appl. Phys. 2012. V. 111. P. 044301. https://www.doi.org/10.1063/1.3684964
  13. Treu J., Bormann M., Schmeiduch H., Döblinger M., Morkötter S., Matich S., Wiecha P., Saller K., Mayer B., Bichler M., Amann M.-C., Finley J. J., Abstreiter G., Koblmüller G., // Nano Lett. 2013. №13. P. 6070−6077. https://www.doi.org/10.1021/nl403341x
  14. Wallentin J., Jacobsson D., Osterhoff M., Borgström M. T., Salditt T. // Nano Lett. 2017. V. 17. P. 4143. https://www.doi.org/10.1021/acs.nanolett.7b00918
  15. Göransson D.J.O., Borgström M.T., Huang Y.Q., Messing M.E., Hessman D., Buyanova I.A., Chen W.M., Xu H.Q. // Nano Lett. 2019. V. 19. P. 2674. https://www.doi.org/10.1021/acs.nanolett.9b00644
  16. Rota M.B., Ameruddin A.S., Fonseka H.A., Gao Q., Mura F., Polimeni A., Miriametro A., Tan H.H., Jagadish C., Capizzi M. // Nano Lett. 2016. V. 16. P. 5197. https://www.doi.org/10.1021/acs.nanolett.6b02205
  17. McDermott S., Lewis R.B. // ACS Appl. Nano Mater. 2021. V. 4. P. 10164. https://www.doi.org/10.1021/acsanm.1c01636
  18. Stankevic T., Hilner E., Seiboth F., Ciechonski R., Vescovi G., Kryliouk O., Johansson U., Samuelson L., Wellenreuther G., Falkenberg G., Feidenhans’l R., Mikkelsen A. // ACS Nano. 2015. V. 9. P. 6978. https://www.doi.org/10.1021/acsnano.5b01291
  19. Hetzl M., Winnerl J., Francaviglia L., Kraut M., Döblinger M., Matich S., Fontcuberta i Morral A., Stutzmann M. // Nanoscale. 2017. V. 9. P. 7179. https://www.doi.org/10.1039/C7NR00802C
  20. Anyebe E.A. // Nanomaterials 2020. V. 10. P. 2064. https://www.doi.org/10.3390/nano10102064.
  21. Hua B., Motohisa J., Kobayashi Y., Hara S., Fukui T. // Nano Lett. 2009. V. 9. P. 112. https://www.doi.org/10.1021/nl802636b.
  22. Tomioka K., Motohisa J., Hara S., Hiruma K., Fukui T. // Nano Lett. 2010. V. 10. P. 1639. https://www.doi.org/10.1021/nl9041774.
  23. Mayer B., Rudolph D., Schnell J., Morkötter S., Winnerl J., Treu J., Müller K., Bracher G., Abstreiter G., Koblmüller G., Finley J.J. // Nat. Commun. 2013. V. 4. P. 2931. https://www.doi.org/10.1038/ncomms3931.
  24. Keplinger M., Martensson T., Stangl J., Wintersberger E., Mandl B., Kriegner D., Holy V., Bauer G., Deppert K., Samuelson L. // Nano Lett. 2009. V. 9. P. 1877. https://www.doi.org/10.1021/nl803881b.
  25. Ishizaka A., Shiraki Y. // J. Electrochem. Soc. 1986. V. 133. № 4. P. 666. https://www.doi.org/10.1149/1.2108651
  26. Fedorov V.V., Berdnikov Y., Sibirev N.V., Bolshakov A.D., Fedina S.V., Sapunov G.A., Dvoretckaia L.N., Cirlin G., Kirilenko D.A., Tchernycheva M., Mukhin I.S. // Nanomaterials. 2021. V. 11. P. 1949. https://www.doi.org/10.3390/nano11081949
  27. Koblmüller G, Hertenberger S, Vizbaras K, Bichler M, Bao F, Zhang JP, Abstreiter G. // Nanotechnology. 2010 V. 21. № 36. P. 365602. https://www.doi.org/10.1088/0957-4484/21/36/365602
  28. Tomioka K., Motohisa J., Hara S., Fukui T. // Nano Lett. 2008. № 8. P. 3475. https://www.doi.org/10.1021/nl802398j
  29. Küpers H., Lewis R. B., Corfdir P., Niehle M., Flissikowski T., Grahn H.T., Trampert A., Brandt O., Geelhaar L. // ACS Appl. Mater. Interfaces. 2021. № 13. P. 50220. https://www.doi.org/10.1021/acsanm.2c05575
  30. Heinke H., Möller M.O., Hommel D., Landwehr G. // J. Cryst. Growth. 1994. V. 135. P. 41. https://www.doi.org/10.1016/0022-0248(94)90724-2
  31. Göransson D.J.O., Borgström M.T., Huang Y.Q., Messing M.E., Hessman D., Buyanova I.A., Chen W.M., Xu H.Q. // Nano Lett. 2019. № 4. P. 2674. https://www.doi.org/10.1021/acs.nanolett.9b00644

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).