Formation of Nanoporous Germanium Layers by Irradiation with Indium Ions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Currently, thin nanoporous Ge layers are applied in various technological devices, such as, for example, in the anode structures of lithium-ion batteries, IR-absorbing gas sensors, etc. A separate interesting application of such layers is their use as highly effective antireflection optical coatings for various photodetectors and solar cells. This study is devoted to the problem of creating an antireflection coating on a c-Ge surface using low-energy high-dose implantation of 115In+ ions in a vacuum, as opposed to the generally accepted chemical method, which leads to the accumulation of chemical reaction residues in the created nanoporous structures. The study results of the surface modification of polished monocrystal c-Ge substrate irradiated with 115In+ ions with an energy of 30 keV are presented at a current density of 5 μA/cm2 and a wide range of high doses of 1.0 × 1014–7.2 × 1016 ions/cm2. Morphological analysis of surface topography was carried out using high-resolution scanning electron microscopy. The appearance and change in the morphology of porous layers with increasing ion dose were determined. At the lowest dose value of 1.8 × 1015 ions/cm2, a hole porous structure with nanometer round holes is formed. When the critical dose value of 1.9 × 1016 ions/cm2 is exceeded, the formation of a spongy porous structure formed by intertwining nanowires is observed, geometric parameters of which do not further change with increasing dose. By measuring the optical reflection spectra of the implanted layers, it was shown that the formed material is characterized by a low reflectance in the spectral region of 220–1050 nm and can serve as an effective antireflection coating.

About the authors

A. L Stepanov

Zavoisky Physical-Technical Institute, Kazan Scientific Center, Russian Academy of Sciences

Email: aanstep@gmail.com
Kazan, Russia

V. F Valeev

Zavoisky Physical-Technical Institute, Kazan Scientific Center, Russian Academy of Sciences

Kazan, Russia

V. I Nuzhdin

Zavoisky Physical-Technical Institute, Kazan Scientific Center, Russian Academy of Sciences

Kazan, Russia

A. M Rogov

Zavoisky Physical-Technical Institute, Kazan Scientific Center, Russian Academy of Sciences

Kazan, Russia

D. A Konovalov

Zavoisky Physical-Technical Institute, Kazan Scientific Center, Russian Academy of Sciences

Kazan, Russia

References

  1. Raut H.K., Ganesh V.A., Nair A.S., Ramakrishna S. // Energy Environ. Sci. 2011. V. 4. P. 3779. http://doi.org/10.1039/c1ee01297e
  2. Cai J., Qi L. // Mater. Horiz. 2015. V. 2. P. 37. http://doi.org/10.1039/c4mh00140k
  3. Khan S.B., Wu H., Pan C., Zhang Z. // Research Rev. J. Mater. Sci. 2017. V. 5. P. 36. http://doi.org/10.4172/2321-6212.1000192
  4. Shanmugam N., Pugazhendhi R., Elavarasan R.M. et al. // Energies. 2020. V.13. P. 2631. http://doi.org/10.3390/en13102631
  5. Han Lu., Zhao H. // Opt. Express. 2014. V. 22. № 26. P. 31908. http://doi.org/10.1364/OE.22.031907
  6. Liu S., Tso C.Y., Lee H.H. et al. // Sci. Reports. 2020. V. 10. P. 11376. http://doi.org/10.1038/s41598-020-68411-6
  7. Yelisseyev A.P., Isaenko L.I., Lobanov S.I. et al. // Opt. Mater. Express. V. 12. № 4. P. 1593. http://doi.org/10.1364/OME.455050
  8. Chang C.-C., Huang C.-H. // Electronics. 2022. V. 11. P. 2068. http://doi.org/10.3390/electronics11132068
  9. Kim S., Jeong G.S., Park N.Y., Choi J.-Y. // Micromachines. 2021. V. 12. P. 119. http://doi.org/10.3390/mi2020119
  10. Schicho S., Jaouad A., Sellmer C. et al. // Meter. Lett. 2013. V. 94. P. 86. http://doi.org/10.1016/j.matlet.2012.12.014
  11. Steglich M., Kasebier T., Kley E.-B., Tunnermann A. // Appl. Phys. A. 2016. V. 122. P. 836. http://doi.org/10.1007/s00339-016-0318-y
  12. Chueh Y.-L., Fan Z., Takei K. et al. // Nano Lett. V. 10. P. 520. http://doi.org/10.1021/nl903366z
  13. Nayak B., Gupta M.C., Kolasinski K.W. // Nanotechnology. 2007. V. 18. P. 195302. http://doi.org/10.1088/0957-4484/18/19/195302
  14. Kaufmann R., Isella G., Sanchez-Amores A. et al. // J. Appl. Phys. 2011. V. 110. P. 023107. http://doi.org/10.1063/1.3608245
  15. Tang L., Kocabas S.E., Latif S. et al. // Nat. Photonics. 2008. V. 2. P. 226. http://doi.org/10.1038/nphoton.2008.30
  16. Posthuma N.E., van der Heide J., Flamand G., Poortmans J. // IEEE Trans. Electron. Dev. 2007. V. 54. P. 1210. http://doi.org/10.1109/TED.2007.894610
  17. Gilbert L.R., Messier R., Roy R. // Thin solid films. 1978. V. 54. P. 149.
  18. Kadakia N., Naczas S., Bakhru H., Huang M. // Appl. Phys. Lett. 2010. V. 97. P. 191912.
  19. Rogov A.M., Nuzhdin V.I., Valeev V.F., Stepanov A.L. // Composites Commun. 2020. V. 19. P. 6. http://doi.org/10.1016/j.coco.2020.01.002
  20. Степанов А.Л., Нуждин В.И., Рогов А.М., Воробьев В.В. Формирование слоев пористого кремния и германия с металлическими наночастиами. Казань: ФИЦПРЕСС, 2019. 198 c.
  21. Auret F.D., van Rensburg P.J.J., Hayes M. et al. // Appl. Phys. Lett. 2006. V. 89. P. 152123.
  22. Stepanov A.L., Zhikharev V.A., Hole D.E., Townsend P.D. // Nucl. Instr. Meth. Phys. Res. B. V. 166. P. 26 (2000).
  23. Nastasi M., Mayer J.W., Hirvonen J.K. Ion-solid interactions. Fundamentals and applications. Cambridge: Cambridge Univ. Press., 1996. 540 p.
  24. Holland O.W., Appleton B.R., Narayan J. // J. Appl. Phys. 1983. V. 54. P. 2295.
  25. Appleton B.R., Holland O.W., Poker D.B. et al. // Nucl. Instr. Meeth. Phys. Res. B. 1985. V. 7-8. P. 639.
  26. Gavrilin I.M., Kudryashova Yu.O., Kuz’mina A.A. et al. // J. Electroanalytic. Chem. 2021. V. 888. P. 115209. http://doi.org/10.1016/j.jelechem.2021.115209
  27. Feng R., Kremer F., Sprouster D.J. et al. // Appl. Phys. Lett. 2015. V. 107. P. 212101.
  28. Feng R., Kremer F., Sprouster D.J. et al. // J. Appl. Phys. 2015. V. 118. P. 165701.
  29. Donovan T.M., Ashley E.J. // J. Opt. Soc. Am. 1964. V. 54. № 9. P. 1141.
  30. Тауц Я. // УФН. 1968. Т. 94. № 3. С. 501. http://doi.org/10.3367/UFNr.0094.196803e.0501
  31. Liu H., Li S., Sun P. et al. // Mater. Sci. Semicond. Processing. 2018. V. 83. P. 58. http://doi.org/10.1016/j.mssp.2018.04.019
  32. Donovan T.M., Spicer W.E., Bennett J.M., Ashley E.J. // Phys. Rev. B. 1970. V. 2. № 2. P. 397.
  33. Koffel S., Scheiblin P., Claverie A., Benassayag G. // J. Appl. Phys. 2009. V. 105. P. 13528. http://doi.org/10.1063/1.3041653
  34. Stepanov A.L., Rogov A.M. // Opt. Commun. 2020. V. 474. P. 126052.
  35. Stepanov A.L., Hole D.E., Townsend P.D. // J. Non- Cryst. Solids. 1999. V. 244. P. 275.
  36. Stepanov A.L., Hole D.E., Townsend P.D. // Nucl. Instr. Meeth. Phys. Res. B. 2000. V. 166–167. P. 882.
  37. Ho W.-J., Yang H.-Y., Liu J.-J. et al. // Appl. Surf. Sci. 2020. V. 508. P. 145275. http://doi.org/10.1016/j.apsusc.2020.145275
  38. Dimoulas A. Tsipas P., Sotirpoulos A. // Appl. Phys. Lett. 2006. V. 89. P. 252110.
  39. Akkari E., Touayar. O. // Int. J. Nanotehcnology. 2013. V. 10. P. 553.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).