Transversal Motion Quantum States Populating in Planar Channeling Mode and the Resonant Capture of Relativistic Electrons in the Axial Channeling Mode

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The passage features of a beam of relativistic charged particles (electrons or positrons) through a single crystal along densely packed crystallographic planes or axis as well as the characteristics of the resulting electromagnetic radiation are determined by the possibility of capturing particles in the channeling mode and their distribution by quantum states with different transverse motion energies. An accurate quantum calculation of the populating coefficients for different quantum states of the transverse energy spectrum is mathematically very difficult and analytically possible only for the simplest model potentials. For the more realistic potential models of plane or axial channels in crystals the only available possibility is to make estimations using classical or quasi- classical approximations. The article provides calculations and evaluations of the quantum states population probabilities for planar channeling. It is demonstrated that even for collimated particle beams, when the particle capture probabilities are high enough, the particles distribution by transverse energies in planar channel is close to even. The possibility of resonant capture in the axial channeling mode for electrons entering single crystal with angular momentum values relative to the crystal axes multiples of the Planck constant is also evaluated.

About the authors

N. P Kalashnikov

National Research Nuclear University "MEPhI"

Email: kalash@mephi.ru
Moscow, Russia

A. S Olchak

National Research Nuclear University "MEPhI"

Moscow, Russia

References

  1. Калашников Н.П., Ольчак А.С. // Поверхность: рентген., синхротр. и нейтрон. исслед. 2022. № 8. C.108. https://www.doi.org/10.31857/S1028096022050132
  2. Калашников Н.П., Ольчак А.С. // Поверхность: рентген., синхротр. и нейтрон. исслед.. 2022. № 10. C. 107. https://www.doi.org/10.31857/S1028096022080088
  3. Kalashnikov N.P., Olchak A.S., Khangulyan E.V. // Nucl. Instrum. Methods Phys. Res. B. 2013. V. 30. P. 67.
  4. Kalashnikov N.P., Olchak A.S. // J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2024. V. 18. № 3. P. 759.
  5. Калашников Н.П. Когерентные взаимодействия заряженных частиц в монокристаллах. М.: Атомиздат, 1981, 224 с.
  6. Каган Ю.М., Кононец Ю.В. Квантовая теория каналирования. М.: МИФИ. 1979. 86 с.
  7. Ахиезер А.И., Шульга Н.Ф. Электродинамика высоких энергий в веществе. М.: ГРФМЛ. Наука, 1993. 344 с.
  8. Фано У., Фано Л. Физика атомов и молекул. М.: Наука, 1980. 658 с.
  9. Ландау Л.Д., Лифшиц Е.М. Квантовая механика. М.: Наука, 1974. 782 c.
  10. Калашников Н.П., Мамонов М.Н., Ольчак А.С., Стриханов М.Н. // Физика твердого тела. 1983. Т. 25. № 1. C. 190.
  11. Kalashnikov N.P., Oltchak A.S. // Nuovo Cimento. 1979. V. 50b. № 2. P. 199.
  12. Ольчак А.С. // ЖЭТФ. 1984. Т. 37. № 1. C. 100.
  13. Линдхард Й. // УФН. 1969. Т. 99. № 2. С. 249.
  14. Оцуки Е.-Х. Взаимодействие заряженных частиц с твердыми телами. М.: Мир, 1985. 272 с.
  15. Воробьев С.А. Каналирование электронных пучков. М.: Энергоатомиздат, 1984. 96 с.
  16. Жеваго Н.К., Глебов В.И. // ЖЭТФ. 2017. Т. 151. Вып. 6. С. 995.
  17. Khokonov M.Kh., Bekulova I.Z., Lomonosov V.S. Radiation in Oriented Crystals and in the Field of Powerful Lasers. // Reports of the Lth International Tulinov’s Conference “Interaction of Charged Particles with Crystals”, Moscow, 2021. P. 71.
  18. Kalashnikov N.P., Olchak A.S. // J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2017. V. 11. № 3. P. 646. https://www.doi.org/10.1134/S1027451017030284

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).