Magnetic nanodisks for therapy of malignant neoplasms
- Authors: Fedotovskaya V.D.1,2, Zamay T.N.1,2, Kolovskaya O.S.1,2, Kichkailo A.S.1,2, Galeev R.G.3, Zukov R.A.2,4, Ovchinnikov S.G.5, Zamay S.S.1
-
Affiliations:
- Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences
- Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University
- NPP «Radiosviaz»
- Krasnoyarsk Regional Clinical Oncological Dispensary named after A.I. Kryzhanovsky
- L.V. Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences
- Issue: Vol 30, No 2 (2025)
- Pages: 133-143
- Section: Reviews
- URL: https://medbiosci.ru/1028-9984/article/view/364015
- DOI: https://doi.org/10.17816/onco683130
- EDN: https://elibrary.ru/UAVIAY
- ID: 364015
Cite item
Abstract
The steady increase in cancer incidence, leading to high mortality and disability rates among the working-age population, underscores the importance of developing innovative therapeutic approaches. One promising strategy is magnetically guided microsurgery of individual tumor cells using functionalized magnetic nanostructures. Among different types of magnetic particles, nanodiscs demonstrate the greatest potential owing to their unique magnetic properties. Their capacity for modification with targeting molecules allows the development of highly specific systems for selective action on tumor cells. This review assesses the prospects of applying functionalized magnetic nanodiscs (referred to as a smart nanoscalpel) for the selective destruction of malignant cells. Materials and methods included a systematic analysis of scientific publications from 2022 to 2025 in PubMed using the keywords magnetic nanodiscs, malignant neoplasms, and magnetic nanoparticles. Particular attention is given to the mechanisms by which nanodiscs, under the influence of an alternating magnetic field, can selectively destroy tumor cells whereas preserving the viability of surrounding healthy cells. The analysis highlights the considerable potential of targeted magnetic nanodiscs as a promising adjuvant tool for the selective elimination of residual tumor cells in the postoperative period, as well as for the treatment of disseminated metastatic foci. However, translation of the magnetomechanical approach from experimental research into clinical practice requires comprehensive preclinical studies, including optimization of the physicochemical parameters of nanodiscs, thorough evaluation of efficacy and safety, and the development of standardized application protocols.
About the authors
Victoria D. Fedotovskaya
Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences; Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University
Email: viktoriia.fedotovskaia@gmail.com
ORCID iD: 0000-0002-6472-0782
SPIN-code: 4500-4728
Russian Federation, Krasnoyarsk; Krasnoyarsk
Tatiana N. Zamay
Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences; Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University
Author for correspondence.
Email: tzamay@yandex.ru
ORCID iD: 0000-0002-7493-8742
SPIN-code: 8799-8497
Dr. Sci. (Biology)
Russian Federation, 1 P. Zheleznyaka st, Krasnoyarsk, 660022; KrasnoyarskOlga S. Kolovskaya
Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences; Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University
Email: olga.kolovskaya@gmail.com
ORCID iD: 0000-0002-2494-2313
SPIN-code: 2254-5474
Dr. Sci. (Biology)
Russian Federation, Krasnoyarsk; KrasnoyarskAnna S. Kichkailo
Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences; Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University
Email: annazamay@yandex.ru
ORCID iD: 0000-0003-1054-4629
SPIN-code: 5387-9071
Dr. Sci. (Biology)
Russian Federation, Krasnoyarsk; KrasnoyarskRinat G. Galeev
NPP «Radiosviaz»
Email: info@krtz.su
Dr. Sci. (Physics and Mathematics)
Russian Federation, KrasnoyarskRuslan A. Zukov
Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University; Krasnoyarsk Regional Clinical Oncological Dispensary named after A.I. Kryzhanovsky
Email: zukov.ra@krasgmu.ru
ORCID iD: 0000-0002-7210-3020
SPIN-code: 3632-8415
Russian Federation, Krasnoyarsk; Krasnoyarsk
Sergey G. Ovchinnikov
L.V. Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences
Email: sgo@iph.krasn.ru
ORCID iD: 0000-0003-1209-545X
SPIN-code: 4857-6804
Dr. Sci. (Physics and Mathematics)
Russian Federation, KrasnoyarskSergey S. Zamay
Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences
Email: sergey-zamay@yandex.ru
ORCID iD: 0000-0002-4828-7077
SPIN-code: 6227-2236
Cand. Sci. (Physics and Mathematics)
Russian Federation, KrasnoyarskReferences
- Ferlay J, Colombet M, Soerjomataram I, et al. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries and 25 major cancers in 2018. European Journal of Cancer. 2018;103:356–387. doi: 10.1016/j.ejca.2018.07.005
- The Global Cancer Observatory. Cancer Fact Sheet — All Cancers. World Health Organ: Lyon, France. 2019;876:1–2.
- Siegel RL, Miller KD,Cancer statistics, 2020. СА: A Cancer Journals for Clinicians. 2020;70(1):7–30. doi:
- Pichot SL, Bentouati S, Ahmad SS, et al. Versatile magnetic microdiscs for the radio enhancement and mechanical disruption of glioblastoma cancer cells. RSC Advances. 2020;10(14):8161–8171. doi: 10.1039/d0ra00164c
- Rivera-Rodriguez A, Rinaldi-Ramos CM. Emerging Biomedical Applications Based on the Response of Magnetic Nanoparticles to Time-Varying Magnetic Fields. Annual Review of Chemical and Biomolecular Engineering. 2021;7(12):163–185. doi: 10.1146/annurev-chembioeng-102720-015630
- Cheng Y, Muroski ME, Petit DCMC, et al. Rotating magnetic field induced oscillation of magnetic particles for in vivo mechanical destruction of malignant glioma. Journal of Controlled Release. 2016;223:75–84. doi: 10.1016/j.jconrel.2015.12.028
- Wo R, Xu R, Shao Y et al. A Multimodal System with Synergistic Effects of Magneto-Mechanical, Photothermal, Photodynamic and Chemo Therapies of Cancer in Graphene-Quantum Dot-Coated Hollow Magnetic Nanospheres. Theranostics. 2016;6(4):485–500. doi: 10.7150/thno.13411
- Martínez-Banderas AI, Aires A, Teran FJ, et al. Functionalized magnetic nanowires for chemical and magneto-mechanical induction of cancer cell death. Scientific Reports. 2016;6:35786. doi: 10.1038/srep35786
- Kim DH, Rozhkova EA, Ulasov IV, et al. Biofunctionalized magnetic-vortex microdiscs for targeted cancer-cell destruction. Nature Materials. 2010;9(2):165–171. doi: 10.1038/nmat2591
- Zhang E, Kircher MF, Koch M, et al. Dynamic Magnetic Fields Remote-Control Apoptosis via Nanoparticle Rotation. ACS Nano. 2014;8(4):3192–3201. doi: 10.1021/nn406302j
- Domenech M, Marrero-Berrios I, Torres-Lugo M, Rinaldi C. Lysosomal Membrane Permeabilization by Targeted Magnetic Nanoparticles in Alternating Magnetic Fields. ACS Nano. 2013;7(6):5091–5101. doi: 10.1021/nn4007048
- Muroski ME, Morshed RA, Cheng Y, et al. Controlled Payload Release by Magnetic Field Triggered Neural Stem Cell Destruction for Malignant Glioma Treatment. PLoS ONE. 2016;11(1):e0145129. doi: 10.1371/journal.pone.0145129
- Contreras MF, Sougrat R, Zaher A, et al. Non-chemotoxic induction of cancer cell death using magnetic nanowires. International Journal of Nanomedicine. 2015;10:2141–2153. doi: 10.2147/IJN.S77081
- Cho MH, Lee EJ, Son M, et al. A magnetic switch for the control of cell death signalling in vitro and in vivo systems. Nature Materials. 2012;11(12):1038–1043. doi: 10.1038/nmat3430
- Zamay TN, Zamay SS, Kolovskaya OS, Kichkailo AS. Magnetic Nanoparticles in Theranostics. In: Handbook of Materials for Nanomedicine: Metal-Based and Other Nanomaterials. Danvers, Jenny Stanford of Publishing Ptc. Ltd.; 2020:201–244.
- Andrés VM, Costo R, Roca AG, et al. Uniform and water stable magnetite nanoparticles with diameters around the monodomain–multidomain limit. Journal of Physics D: Applied Physics. 2008;41(13):134003. doi: 10.1088/0022-3727/41/13/134003
- Irodov EI. Electromagnetism. Basic Laws. Moscow: Knowledge Lab; 2019. 319 р. (In Russ.)
- Orlov VA, Rudenko RYu, Prokopenko VS, Orlova IN. The effect of mechanical stresses on the structure of the magnetization of three-layer nanosome disks. Physics of metals and metal science. 2020;121(11):1135–1141. doi: 10.31857/S0015323020100071 EDN: KXSKHQ
- Lu A-H, Salabas EL, Schuth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angewandte Chemie. 2007;46(8):1222–1244. doi: 10.1002/anie.200602866
- Zugazagoitia J, Guedes C, Ponce S, et al. Current challenges in cancer treatment. Clinical Therapeutics. 2016;38(7):1551–1566. doi: 10.1016/j.clinthera.2016.03.026
- Goiriena-Goikoetxea M, Muñoz D, Orue I, et al. Disk-shaped magnetic particles for cancer therapy. Physical Review Applied. 2020;7(1):011306. doi: 10.1063/1.5123716
- Zamay TN, Zamay GS, Belyanina IV, et al. Noninvasive Microsurgery Using Aptamer-Functionalized Magnetic Microdiscs for Tumor Cell Eradication. Nucleic Acid Therapeutics. 2016;27(2):105–114. doi: 10.1089/nat.2016.0634
- Fedotovskaya VD, Zamay SS, Zotova MV, et al. Magnetic Nanodiscs That Destroy Glioblastoma Cells in a Targeted Way in an Alternating Nonheating Magnetic Field. Nanobiotechnology Reports. 2024;19(2):299–304. doi: 10.1134/S2635167624600834
- Vemulkar T, Mansell R, Petit DCMC, et al. Highly tunable perpendicularly magnetized synthetic antiferromagnets for biotechnology applications. Applied Physics Letters. 2015;107(1):012403. doi: 10.1063/1.4926336
- Engel BN, Akerman J, Butcher B, et al. A 4-mb toggle MRAM based on a novel bit and switching method. IEEE Transactions Magnetics. 2005;41(1):132–136. doi: 10.1109/tmag.2004.840847
- Hu W, Wilson CRJ, Koh A, et al. High-moment antiferromagnetic nanoparticles with tunable magnetic properties. Advanced Material. 2008;20(8):1479–1483. doi: 10.1002/adma.200703077
- Courcier T, Joisten H, Sabon P, et al. Tumbling motion yielding fast displacements of synthetic antiferromagnetic nanoparticles for biological applications. Applied Physics Letters. 2011;99(9):093107. doi: 10.1063/1.3633121
- Guslienko KY, Novosad V, Otani Y, et al. Field evolution of magnetic vortex state in ferromagnetic disks. Applied Physics Letters. 2001;78(24):3848–3850. doi: 10.1063/1.1377850
- Joisten H, Courcier T, Balint P, et al. Self-polarization phenomenon and control of dispersion of synthetic antiferromagnetic nanoparticles for biological applications. Applied Physics Letters. 2010;97(25):253112. doi: 10.1063/1.3518702
- Wong DW, Gan WL, Liu N, Lew WS. Magnetoactuated cell apoptosis by biaxial pulsed magnetic field. Scientific Reports. 2017;7(1):1–8. doi: 10.1038/s41598-017-11279-w
- Zamay T, Zamay S, Luzan N, et al. Magnetic Nanoscalpel for the Effective Treatment of Ascites Tumors. Journal of Functional Biomaterials. 2023;14(4):179. doi: 10.3390/jfb14040179
- Scholz W, Guslienko KY, Novosad V, et al. Transition from single-domain to vortex state in soft magnetic cylindrical nanodots. Journal of Magnetism and Magnetic Material. 2003;266(1–2):155–163. doi: 10.1016/S0304-8853(03)00466-9
- Moritz J, Dieny B, Nozieres JP, et al. Domain structure in magnetic dots prepared by nanoimprint and e-beam lithography. Journal Applied Physics. 2002;91(10):7314–7316. doi: 10.1063/1.1452260
- Zamay SS, Galeev RG, Narodov AA, Kichkaylo AS. The technology of creating a “smart nanoscalpel” for microsurgery of malignant neoplasms. Science and technology of Siberia. 2023;4 (11):60–63.
- Illi B, Scopece A, Nanni S, et al. Epigenetic histone modification and cardiovascular lineage programming in mouse embryonic stem cells exposed to laminar shear stress. Circulation Research. 2005:96(5):501–508. doi: 10.1161/01.RES.0000159181.06379.63
- Stolberg S, McCloskey KE. Can shear stress direct stem cell fate? Biotechnology Progress. 2009;25(1):10–19. doi: 10.1002/btpr.124
- Vitol EA, Yefremenko VG, Jain S, et al. Optical transmission modulation by disk-shaped ferromagnetic particles. Journal Applied Physics. 2012;111(7):07A945. doi: 10.1063/1.3679567
- Mansell R, Vemulkar T, Petit DCMC, et al. Magnetic particles with perpendicular anisotropy for mechanical cancer cell destruction. Scientific Reports. 2017;7(1):4257. doi: 10.1038/s41598-017-04154-1
- Wilhelm S, Tavares AJ, Dai Q, et al. Analysis of nanoparticle delivery to tumours. Nature Reviews Materials. 2016;1(5):1–12. doi: 10.1038/natrevmats.2016.14
- Decuzzi BG, Tanaka T, Lee SY, et al. Size and shape effects in the biodistribution of intravascularly injected particles. Journal Controlled Release. 2010;141(3):320–327. doi: 10.1016/j.jconrel.2009.10.014
- Zamay GS, Zamay TN, Lukyanenko KA, Kichkailo AS. Aptamers increase biocompatibility and reduce the toxicity of magnetic nanoparticles used in biomedicines. Biomedicines. 2020;8(3):1–14. doi: 10.3390/biomedicines8030059
- Carboni K, Tschudi J, Nam X, et al. Particle margination and its implications on intravenous anticancer drug delivery. AAPS PharmSciTech. 2014;15(3):762–771. doi: 10.1208/s12249-014-0099-6
- Chauhan VP, Popovi´c Z, Chen O, et al. Fluorescent nanorods and nanospheres for real-time in vivo probing of nanoparticle shape-dependent tumor penetration. Angewandte Chemie. 2011;50(48):11417–11420. doi: 10.1002/anie.201104449
- Ye H, Shen Z, Yu L, et al. Manipulating nanoparticle transport within blood flow through external forces: An exemplar of mechanics in nanomedicine. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2018;474(2211):1–24. doi: 10.1098/rspa.2017.0845
- Mody VV, Cox A, Shah S, et al. Magnetic nanoparticle drug delivery systems for targeting tumor. Applied Nanoscience. 2014;4(4):385–392. doi: 10.1007/s13204-013-0216-y
Supplementary files


