Hybrid Organosilicate Low-k Dielectrics with Benzene Bridge Groups with Increased Mechanical Properties and Small Pore Size for Modern BEOL Metallization

Cover Page

Cite item

Full Text

Abstract

In this work, the critical properties of a periodic mesoporous organosilicate dielectric with different ratios of benzene bridging and methyl groups are studied using various modern methods, such as ellipsometric porosimetry, surface acoustic wave spectroscopy, X-ray reflectometry, and others. It is shown that the pore size and surface roughness of the films decrease with an increase in the concentration of benzene groups, although at a concentration of >25 mol.%, the pore size sharply decreases and changes little with a further increase. With an increase in the concentration of benzene groups, the dielectric constant also increases and the mechanical properties improve. The increase in Young's modulus has a percolate behavior and increases sharply at a concentration close to 50 mol.%. It was found that the introduction of 30 wt.% porosity in films with benzene groups, in which there are no methyl groups, leads to an increase in Young's modulus. This behavior is associated with the formation of a crystal-like structure on the film framework. An increase in the dielectric constant is associated with the greater polarizability of benzene groups compared to methyl groups, as well as with their greater hydrophilicity and the presence of adsorbed water.

About the authors

Askar A. Rezvanov

MERI

Author for correspondence.
Email: arezvanov@niime.ru
Russian Federation, 6/1 Akademika Valieva Str., Moscow, Zelenograd, 124460, Russia

Alexey S. Vishnevskiy

MIREA – Russian Technological University

Email: vishnevskiy@mirea.ru
Russian Federation, 78 Vernadsky Ave., Moscow, 119454, Russia

Dmitry S. Seregin

MIREA – Russian Technological University

Email: d_seregin@mirea.ru
Russian Federation, 78 Vernadsky Ave., Moscow, 119454, Russia

Andrey A. Lomov

Valiev Institute of Physics and Technology, RAS

Email: lomov@ftian.ru
Russian Federation, 36/1 Nakhimovsky Ave., Moscow, 117218, Russia

Konstantin A. Vorotilov

MIREA – Russian Technological University

Email: vorotilov@mirea.ru
Russian Federation, 78 Vernadsky Ave., Moscow, 119454, Russia

Mikhail R. Baklanov

MIREA – Russian Technological University

Email: baklanovmr@gmail.com
Russian Federation, 78 Vernadsky Ave., Moscow, 119454, Russia

References

  1. P. Van Der Voort, D. Esquivel, E. De Canck, F. Goethals, I. Van Driessche, F. J. Romero-Salguero Chem. Soc. Rev., 2013, 42(9), 3913. doi: 10.1039/C2CS35222B.
  2. A.M. Kaczmarek, S. Abednatanzi, D. Esquivel, C. Krishnaraj, H.S. Jena, G. Wang, K. Leus, R. Van Deun, F.J. Romero-Salguero, P. Van Der Voort Micropor. Mesopor. Mat., 2020, 291, 109687. doi: 10.1016/j.micromeso.2019.109687.
  3. D. Arcos, M. Vallet-Regí Acta Biomater., 2010, 6(8), 2874. doi: 10.1016/j.actbio.2010.02.012.
  4. Advanced Interconnects for ULSI Technology, Eds M.R. Baklanov, P.S. Ho, E. Zschech, UK, Chichester, Wiley, 2012, 608 pp. doi: 10.1002/9781119963677.
  5. V. Jousseaume, O. Gourhant, P. Gonon, A. Zenasni, L. Favennec J. Electrochem. Soc., 2012, 159(5), G49. doi: 10.1149/2.jes113605.
  6. J. Li, T.E. Seidel and J.W. Mayer MRS Bulletin, 1994, 19(8), 15. doi: 10.1557/S0883769400047692.
  7. A.S. Valeev, G.Ya. Krasnikov, V.A. Gvozdev, P.I. Kuznetsov Pat. Ru, 2548523, 2013.
  8. L. Zhang, J.-F. de Marneffe, N. Heylen, G. Murdoch, Z. Tokei, J. Boemmels, S. De Gendt, M.R. Baklanov Appl. Phys. Lett., 2015, 107, 092901. doi: 10.1063/1.4930072.
  9. K. Maex, M.R. Baklanov, D. Shamiryan, F. Iacopi, S.H. Brongersma, Z.S. Yanovitskaya J. Appl. Phys., 2003, 93, 8793. doi: 10.1063/1.1567460.
  10. B.D. Hatton, K. Landskron, W.J. Hunks, M.R. Bennett, D. Shukaris, D.D. Perovic, G.A. Ozin Mater. Today, 2006, 9(3), 22. doi: 10.1016/S1369-7021(06)71387-6.
  11. H. Li, J.M. Knaup, E. Kaxiras, J.J. Vlassak Acta Mater., 2011, 59, 44. doi: 10.1016/j.actamat.2010.08.015.
  12. J.A. Burg, M.S. Oliver, T.J. Frot, M. Sherwood, V. Lee, G. Dubois, R.H. Dauskardt Nat. Commun., 2017, 8(1), 1019. doi: 10.1038/s41467-017-01305-w.
  13. S. Inagaki, S. Guan, T. Ohsuna, O. Terasaki Nature, 2002, 416(6878), 304. doi: 10.1038/416304a.
  14. A. Rezvanov, A. Vishnevskiy, D. Seregin, D. Schneider, A.A. Lomov, K.A. Vorotilov, M.R. Baklanov Mater. Chem. Phys., 2022, 290, 126571. doi: 10.1016/j.matchemphys.2022.126571.
  15. A.A. Maznev, A. Mazurenko, L. Zhuoyun, M. Gostein Rev. Sci. Instrum., 2003, 74, 667. doi: 10.1063/1.1512680.
  16. R.N. Nenashev, N.M. Kotova, A.S. Vishnevskii, K.A. Vorotilov Inorg. Mater., 2016, 52(6), 625. doi: 10.1134/S0020168516060108.
  17. A.S. Vishnevskiy, D.S. Seregin, K.A. Vorotilov, A.S. Sigov, K.P. Mogilnikov, M.R. Baklanov J. Solgel. Sci. Technol., 2019, 92(4), 273. doi: 10.1007/s10971-019-05028-w.
  18. E-B. Cho, K. Char Chem. Mater., 2003, 16(2), 270. doi: 10.1021/cm0346733.
  19. Y. Goto, S. Inagaki Chem. Commun., 2002, 20, 2410. doi: 10.1039/B207825B.
  20. M.R. Baklanov, K.P. Mogilnikov Microelectron. Eng., 2002, 64(1), 335. doi: 10.1016/S0167-9317(02)00807-9.
  21. A.G. Attallah, A.S. Vishnevskiy, M.O. Liedke, E. Hirschmann, M. Butterling, D.S. Seregin, A.A. Rezvanov, K.A. Vorotilov, M.R. Baklanov, A. Wagner In Proc. 12.5th International Workshop on Positron and Positronium Chemistry, (Internet, 30 August – 3 September, 2021), 2021 (https:// ppc12.5.umcs.pl/?page_id=502).
  22. M.R. Baklanov, V. Jousseaume, T.V. Rakhimova, D.V. Lopaev, Yu.A. Mankelevich, V.V. Afanas'ev, J.L. Shohet, S.W. King, E.T. Ryan Appl. Phys. Rev., 2019, 6(1), 011301. doi: 10.1063/1.5054304.
  23. P. Marsik, P. Verdonck, D. De Roest, M.R. Baklanov Thin Solid Films, 2010, 518(15), 4266. doi: 10.1016/j.tsf.2009.12.110.
  24. D.C. Hurley, V.K. Tewary, A.J. Richards Meas. Sci. Technol., 2001, 12, 1486. doi: 10.1088/0957-0233/12/9/315.
  25. A.D. Ross PhD Thes. in Chemical Engineering, Massachusetts Institute of Technology, USA, Boston, 2005, 119 pp.
  26. A.P. Dral, C. Lievens, J.E. ten Elshof Langmuir, 2017, 33(22), 5527. doi: 10.1021/acs.langmuir.7b00971.
  27. V.A. Pustovarov, A.F. Zatsepin, D.Y. Biryukov, V.S. Aliev, R.M.K. Iskhakzay, V.A. Gritsenko J. Non-Cryst. Solids, 2023, 602, 122077. doi: 10.1016/j.jnoncrysol.2022.122077.
  28. L. Skuja J. Non-Cryst. Solids, 1998, 239(1-3) 16. doi: 10.1016/S0022-3093(98)00720-0.
  29. R. Salh In Crystalline Silicon – Properties and Uses, USA, TX, Houston, IntechOpen Publ., 2011, pp. 135–172. doi: 10.5772/22607.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Rezvanov A.A., Vishnevskiy A.S., Seregin D.S., Lomov A.A., Vorotilov K.A., Baklanov M.R.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).