Minerageny of modern continental carbonates in the Perm Region
- Авторлар: Utkina T.A.1, Trapeznikov D.E.1, Chaikovskiy I.I.1
-
Мекемелер:
- Mining Institute, UB RAS
- Шығарылым: Том 25, № 5 (2025)
- Беттер: 1007-1022
- Бөлім: Articles
- URL: https://medbiosci.ru/1681-9004/article/view/359037
- DOI: https://doi.org/10.24930/2500-302X-2025-25-5-1007-1022
- EDN: https://elibrary.ru/FUASCZ
- ID: 359037
Дәйексөз келтіру
Толық мәтін
Аннотация
Research subject. Deposits and occurrences of calcareous tufa, spring waters with a mineralization of more than 1 g/dm 3. Aim. Identification of the minerageny features of continental carbonate formation. Materials and methods. An analysis of the chemical composition of spring waters database compiled on the basis of hydrogeological surveys conducted in 1966–1992 at a scale of 1:200 000 in the Perm Region and the Catalogue of Deposits and Occurrences of Minerals of the Perm Region. Interpretation of the digital elevation model to identify neotectonic elements. Results. A mineragenic model of continental carbonate formation was reconstructed, including: (a) mobilization of calcium by underground waters on lifted blocks composed of carbonate-and-sulphate evaporites and groundwater discharge in adjacent trough blocks favorable for the slow flow of surface water; (b) essentially chemical deposition of subaqueous calcareous tufa at the site of groundwater discharge mainly biochemical precipitation of aquatic calcareous tufa in the lake, oxbow lakes and mean dering rivers, favorable for the activity of plants and living organisms. Conclusions. The zoning of calcareous tufa deposits on a neotectonic basis was carried out. The greatest contribution of sulphate calcium waters to the formation of calcareous tufa deposits was shown. The maximum possible quantity of chemogenic and biogenic calcium carbonate that can precipitate from individual springs in 100 years was calculated, amounting to 0.0001–1 million tons
Негізгі сөздер
Авторлар туралы
T. Utkina
Mining Institute, UB RAS
Email: tatyanaak89@mail.ru
D. Trapeznikov
Mining Institute, UB RAS
Email: tatyanaak89@mail.ru
I. Chaikovskiy
Mining Institute, UB RAS
Хат алмасуға жауапты Автор.
Email: tatyanaak89@mail.ru
Әдебиет тізімі
-
Алекин О.А. (1953) Основы гидрохимии. Л.: Гидрометеорологическое изд-во, 296 с. Бриков А.В., Маркин А.Н. (2018) Нефтепромысловая химия: практическое руководство по борьбе с образованием солей. М.: Де’Либри, 335 с. Горбунова К.А., Андрейчук В.Н., Костарев В.П., Максимович Н.Г. (1992) Карст и пещеры Пермской области. Пермь: Изд-во Перм. ун-та, 200 с. Дуров С.А. (1948) Классификация природных вод и графическое изображение их состава. Докл. АН СССР, 1, 87-90. Каткова В.И., Митюшева Т.П., Тетерюк Б.Ю. (2019) Особенности минерализации рдестов реки Вымь (Республика Коми). Изв. Коми НЦ УрО РАН, 1(37), 69-75. https://doi.org/10.19110/1994-5655-2019-1-69-75 Кокаровцев В.К. (1992) Ресурсы и геология голоценовых агрокарбонатов Пермского Предуралья. Екатеринбург: Уралгеология, 216 с. Овчинников Л.Н. (1988) Образование рудных месторождений. М.: Недра, 255 с. Перельман А.И., Касимов Н.С. (1999) Геохимия ландшафта. М.: МГУ, 610 с. Проворов В.М. (1973) Основные черты тектоники нижнепермских отложений и ее связь с глубинным строением Среднего Приуралья. Нижнепермские отложения Камского Предуралья: Тр. ВНИГНИ, вып. 118, 28-48. Силаев В.И., Чайковский И.И., Митюшева Т.П., Хазов А.Ф. (2008) Современные карбонатные минерализации на испарительных и седиментационно-диагенетических изотопно-геохимических барьерах. Сыктывкар: Геопринт, 68 с. Страхов Н.М. (1954) Образование осадков в современных водоемах. М.: АН СССР, 792 с. Чайковский И.И. (2011) Современное биогенное минералообразование в бассейне реки Шаквы. Вестн. Перм. НЦ, 1, 4-8. Arenas-Abad С. (2022) A multi-scale approach to laminated microbial deposits in non-marine carbonate environments through examples of the Cenozoic, north-east Iberian Peninsula, Spain. Deposit. Record, 8(1), 67-101. https://doi.org/10.1002/dep2.145 Auqué L.F., Arenas C., Osácar M.C., Pardo G., Sancho C., Vazques-Brbez M. (2014) Current tufa sedimentation in a changing-slope valley: The River Añamaza (Iberian Range, NE Spain). Sediment. Geol., 303, 26-48. http://doi.org/10.1016/j.sedgeo.2014.01.008 Auqué L.F., Osácar M.C., Arenas C., Cukrov N., Lojen S., Sancho C. (2023) Controls on Mg/Ca Ratios in Recent Stromatolites: Insights from Fluvial Systems in the Iberian Range (Spain). Minerals, 13(1), 57. https://doi.org/10.3390/min13010057 Fubelli G., Dramis F. (2023) Calcareous Tufa: Deposition and Erosion during Geological Times. Appl. Sci., 13(7), 4410. https://doi.org/10.3390/app13074410 Langelier W.F. (1936) The analytical control of anticorrosion water treatment. J. Amer. Water Works Assoc., 28(10), 1500-1521. https://doi.org/10.1002/j.1551-8833.1936.tb13785.x Mercedes-Martín R., Rao A., Rogenson M., Sánchez Román M. (2020) Effects of salinity, organic acids and alkalinity on the growth of calcite spherulites: Implications for evaporitic lacustrine sedimentation. Deposit. Record, 8(1), 143-164. https://doi.org/10.1002/dep2.136 Pedley H.M., Rogerson M., Middleton R. (2009) Freshwater calcite precipitates from in vitro mesocosm flume experiments: a case for biomediation of tufas. Sedimentology, 56(2), 511-527. https://doi.org/10.1111/j.1365-3091.2008.00983.x Pentecost A. (2005) Travertine. Berlin: Springer, 445 p. https://doi.org/10.1017/S0016756806002822 Perri E., Manzo E., Tucker M.E. (2012) Multi-scale study of the role of the biofilm in the formation of minerals and fabrics in calcareous tufa. Sediment. Geol., 263-264, 16-29. https://doi.org/10.1016/j.sedgeo.2011.10.003 Rogerson M., Pedley H.M., Wadhawan J.D., Middleton R. (2008) New insights into biological influence on the geochemistry of freshwater carbonate deposits. Geochim. Cosmochim. Acta, 72(20), 4976-4987. https://doi.org/10.1016/j.gca.2008.06.030 Shvartsev S.L. (2008) Geochemistry of Fresh Groundwater in the Main Landscape Zones of the Earth. Geochem. Int., 46, 1285-1398. https://doi.org/10.1134/S0016702908130016 Shvartsev S.L., Lepokurova O.E., Kopylova Yu.G. (2007) Geochemical mechanisms of travertine formation from fresh waters in southern Siberia. Rus. Geol. Geophys., 48(8), 659-667. https://doi.org/10.1016/j.rgg.2007.07.003 Skillman H.L., McDonald J.P., Stiff H.A. (1969) A Simple, Accurate, Fast Method for Calculating Calcium Sulfate Solubility in Oilfield Brine. American Petroleum Institute, 906-14-I.
Қосымша файлдар
