Современные тенденции в разработке противогрибковых препаратов
- Авторы: Автономова А.В.1,2, Кисиль О.В.2, Загайнова А.В.1, Макаров В.В.1
-
Учреждения:
- Центр стратегического планирования и управления медико-биологическими рисками здоровью
- Научно-исследовательский институт по изысканию новых антибиотиков имени Г.Ф. Гаузе
- Выпуск: Том 32, № 11 (2025)
- Страницы: 763-774
- Раздел: ОБЗОРЫ
- URL: https://medbiosci.ru/1728-0869/article/view/362964
- DOI: https://doi.org/10.17816/humeco695458
- EDN: https://elibrary.ru/LXKNMC
- ID: 362964
Цитировать
Полный текст
Аннотация
Микозы представляют растущую угрозу для общественного здоровья, ежегодно вызывая миллионы случаев инвазивных заболеваний и большое количество летальных исходов. Ограниченный арсенал противогрибковых препаратов, их токсичность и быстрое распространение резистентности диктуют острую необходимость в разработке новых терапевтических стратегий. Данный обзор систематизирует современные тенденции в создании антимикотиков, направленных на терапию инвазивных микозов. Основное внимание уделено препаратам с новыми механизмами действия, нацеленным на ключевые структуры и метаболические пути грибковой клетки. Акцент сделан на литературе последнего десятилетия, однако учтены и важные фундаментальные работы предыдущих периодов. Поиск проводили в электронных базах данных eLibrary.ru, PubMed, Google Scholar, Wally. Перспективными направлениями являются ингибирование синтеза компонентов клеточной стенки, нарушение функций клеточной мембраны через воздействие на эргостерол, фосфолипиды и сфинголипиды, а также влияние на внутриклеточные мишени: внутриклеточные белки и пути передачи сигналов в клетке гриба, процессы биосинтеза белка, процессы репликации и транскрипции нуклеиновых кислот. Рассматриваются ингибиторы синтеза основных компонентов клеточной стенки β-1,3-глюкана (эхинокандины, ибрексафунгерпY), β-1,6-глюкана, хитина (никкомицин Z) и GPI-якорей (фосманогепиксY). Анализируются препараты, воздействующие на эргостерол (отесеконазолY, опельконазолY), сфинголипиды (ингибиторы IPC-синтазы) и фосфолипиды (мандимицинY). Описаны ингибиторы грибковых киназ, Hsp90, кальциневрина, N-миристоилтрансферазы, фактора элонгации EF-2 и нуклеиновых кислот (олорофимY). Некоторые из этих соединений (олорофимY, фосманогепиксY, VT-1598Y, BSG005) находятся на стадии клинических исследований. Подчёркивается важность поиска селективных мишеней и разработки комбинированной терапии для преодоления резистентности и повышения эффективности лечения.
Y Здесь и далее означает, что лекарственное средство не зарегистрировано в Российской Федерации.
Об авторах
Анастасия Витальевна Автономова
Центр стратегического планирования и управления медико-биологическими рисками здоровью; Научно-исследовательский институт по изысканию новых антибиотиков имени Г.Ф. Гаузе
Автор, ответственный за переписку.
Email: aavtonomova@cspfmba.ru
ORCID iD: 0000-0001-5098-5379
SPIN-код: 4409-8108
канд. биол. наук
Россия, Москва; МоскваОльга Валерьевна Кисиль
Научно-исследовательский институт по изысканию новых антибиотиков имени Г.Ф. Гаузе
Email: olvv@mail.ru
ORCID iD: 0000-0003-4799-1318
SPIN-код: 1153-8414
канд. хим. наук
Россия, МоскваАнжелика Владимировна Загайнова
Центр стратегического планирования и управления медико-биологическими рисками здоровью
Email: azagaynova@cspfmba.ru
ORCID iD: 0000-0003-4772-9686
SPIN-код: 6642-7819
канд. биол. наук
Россия, МоскваВалентин Владимирович Макаров
Центр стратегического планирования и управления медико-биологическими рисками здоровью
Email: makarov@cspfmba.ru
ORCID iD: 0000-0001-9495-0266
SPIN-код: 7842-8808
канд. биол. наук
Россия, МоскваСписок литературы
- Monk BC, Sagatova AA, Hosseini P, et al. Fungal lanosterol 14α-demethylase: a target for next-generation antifungal design. Biochim Biophys Acta Proteins Proteom. 2020;1868(3):140206. doi: 10.1016/j.bbapap.2019.02.008 EDN: IZPYUA
- Fesel PH, Zuccaro A. β-glucan: Crucial component of the fungal cell wall and elusive MAMP in plants. Fungal Genet Biol. 2016;90:53–60. doi: 10.1016/j.fgb.2015.12.004
- Curto MÁ, Butassi E, Ribas JC, et al. Natural products targeting the synthesis of β(1,3)-D-glucan and chitin of the fungal cell wall. Existing drugs and recent findings. Phytomedicine. 2021;88:153556. doi: 10.1016/j.phymed.2021.153556
- Emri T, Majoros L, Tóth V, Pócsi I. Echinocandins: production and applications. Appl Microbiol Biotechnol. 2013;97(8):3267–3284. doi: 10.1007/s00253-013-4761-9
- Sofjan AK, Mitchell A, Shah DN, et al. Rezafungin (CD101), a next-generation echinocandin: A systematic literature review and assessment of possible place in therapy. J Glob Antimicrob Resist. 2018;14:58–64. doi: 10.1016/j.jgar.2018.02.013
- Li Y, Lan N, Xu L, Yue Q. Biosynthesis of pneumocandin lipopeptides and perspectives for its production and related echinocandins. Appl Microbiol Biotechnol. 2018;102(23):9881–9891. doi: 10.1007/s00253-018-9382-x
- Jiang K, Luo P, Wang X, Lu L. Insight into advances for the biosynthetic progress of fermented echinocandins of antifungals. Microb Biotechnol. 2024;17(1):e14359. doi: 10.1111/1751-7915.14359
- Helmy NM, Parang K. Cyclic peptides with antifungal properties derived from bacteria, fungi, plants, and synthetic sources. Pharmaceuticals. 2023;16(6):892. doi: 10.3390/ph16060892
- Vicente F, Reyes F, Genilloud O. Fungerps: discovery of the glucan synthase inhibitor enfumafungin and development of a new class of antifungal triterpene glycosides. Nat Prod Rep. 2024;41(12):1835–1845. doi: 10.1039/d4np00044g
- Aderiye BI, Oluwole OA. Antifungal agents that target fungal cell wall components: a review. Agri Biol Sci. 2015;1(5):206–216.
- Onishi J, Meinz M, Thompson J, et al. Discovery of novel antifungal (1,3)-beta-D-glucan synthase inhibitors. Antimicrob Agents Chemother. 2000;44(2):368–377. doi: 10.1128/AAC.44.2.368-377.2000
- Zhang CW, Zhong XJ, Zhao YuS, et al. Antifungal natural products and their derivatives: a review of their activity and mechanism of actions. Pharmacol. Res.-Mod. Chin. Med. 2023;7:100262. doi: 10.1016/j.prmcm.2023.100262
- Martins IM, Cortés JC, Muñoz J, et al. Differential activities of three families of specific beta(1,3)glucan synthase inhibitors in wild-type and resistant strains of fission yeast. J Biol Chem. 2011;286(5):3484–3496. doi: 10.1074/jbc.M110.174300
- Lu Y, Duan MH, Zhao X, et al. Pestiorosins A–F, New Papulacandins isolated from the fungus Pestalotiopsis rosea YNJ21. Chem Biodivers. 2025;22(1):e202401921. doi: 10.1002/cbdv.202401921
- Roemer T, Delaney S, Bussey H. SKN1 and KRE6 Define a pair of functional homologs encoding putative membrane proteins involved in β-Glucan synthesis. Mol Cell Biol. 1993;13(7):4039–4048. doi: 10.1128/mcb.13.7.4039-4048.1993
- Kitamura A, Higuchi S, Hata M, et al. Effect of beta-1,6-glucan inhibitors on the invasion process of Candida albicans: potential mechanism of their in vivo efficacy. Antimicrob Agents Chemother. 2009;53(9):3963–3971. doi: 10.1128/AAC.00435-09
- Roncero C, Sanchez-Diaz A, Valdivieso MH. Chitin synthesis and fungal cell morphogenesis. In: Hoffmeister D, editor. Biochemistry and molecular biology. Vol. III. Cham: Springer International Publishing; 2016. P. 167–190. doi: 10.1007/978-3-319-27790-5_9
- Larwood DJ. Nikkomycin Z—ready to meet the promise? J. Fungi. 2020;6(4):261. doi: 10.3390/jof6040261
- Ibe C, Munro CA. Fungal cell wall: An underexploited target for antifungal therapies. PLoS Pathog. 2021;17(4):e1009470. doi: 0.1371/journal.ppat.1009470
- Shubitz LF, Trinh HT, Perrill RH, et al. Modeling nikkomycin Z dosing and pharmacology in murine pulmonary coccidioidomycosis preparatory to phase 2 clinical trials. J Infect Dis. 2014;209(12):1949–1954. doi: 10.1093/infdis/jiu029
- Richard ML, Plaine A. Comprehensive analysis of glycosylphosphatidylinositol-anchored proteins in candida albicans. Eukaryot Cell. 2007;6(2):119–133. doi: 10.1128/EC.00297-06
- Hoenigl M, Sprute R, Egger M, et al. The antifungal pipeline: fosmanogepix, ibrexafungerp, olorofim, opelconazole, and rezafungin. Drugs. 2021;81(15):1703–1729. doi: 10.1007/s40265-021-01611-0
- Miyazaki M, Horii T, Hata K, et al. In vitro activity of E1210, a novel antifungal, against clinically important yeasts and molds. Antimicrob Agents Chemother. 2011;55(10):4652–4658. doi: 10.1128/AAC.00291-11
- Watanabe N, Miyazaki M, Horii T, et al. E1210, a new broad-spectrum antifungal, suppresses candida albicans hyphal growth through inhibition of glycosylphosphatidylinositol biosynthesis. Antimicrob Agents Chemother. 2012;56(2):960–971. doi: 10.1128/AAC.00731-11
- Shaw KJ, Ibrahim AS. Fosmanogepix: A review of the first-in-class broad spectrum agent for the treatment of invasive fungal infections. J. Fungi. 2020;6(4):239. doi: 10.3390/jof6040239
- Ruiz-Herrera J, Elorza MV, Valentín E, Sentandreu R. Molecular organization of the cell wall of candida albicans and its relation to pathogenicity. FEMS Yeast Res. 2006;6(1):14–29. doi: 10.1111/j.1567-1364.2005.00017.x
- Miyanishi W, Ojika M, Akase D, et al. D-Mannose Binding, aggregation property, and antifungal activity of amide derivatives of Pradimicin A. Bioorg Med Chem. 2022;55:116590. doi: 10.1016/j.bmc.2021.116590
- Pan J, Hu C, Yu JH. Lipid biosynthesis as an antifungal target. J Fungi. 2018;4(2):50. doi: 10.3390/jof4020050
- Campoy S, Adrio JL. Antifungals. Biochem Pharmacol. 2017;133:86–96. doi: 10.1016/j.bcp.2016.11.019
- Sousa F, Nascimento C, Ferreira D, et al. Reviving the interest in the versatile drug Nystatin: a multitude of strategies to increase its potential as an effective and safe antifungal agent. Adv Drug Deliv Rev. 2023;199:114969. doi: 10.1016/j.addr.2023.114969
- Kantarcioglu AS, Yucel A, Vidotto V. In vitro activity of a new polyene SPK-843 against Candida spp, Cryptococcus neoformans and Aspergillus spp clinical isolates. J Chemother. 2003;15(3):296–298. doi: 10.1179/joc.2003.15.3.296
- Kakeya H, Miyazaki Y, Senda H, et al. Efficacy of SPK-843, a novel polyene antifungal, in comparison with Amphotericin B, Liposomal Amphotericin B, and Micafungin against murine pulmonary aspergillosis. Antimicrob Agents Chemother. 2008;52(5):1868–1870. doi: 10.1128/AAC.01369-07
- Wiederhold NP. The antifungal arsenal: alternative drugs and future targets. Int J Antimicrob Agents. 2018;51(3):333–339. doi: 10.1016/j.ijantimicag.2017.09.002
- Sobel JD, Donders G, Degenhardt T, et al. Efficacy and safety of Oteseconazole in recurrent vulvovaginal candidiasis. NEJM Evid. 2022;1(8):EVIDoa2100055. doi: 10.1056/EVIDoa2100055
- Lockhart SR, Fothergill AW, Iqbal N, et al. The investigational fungal Cyp51 inhibitor VT-1129 demonstrates potent in vitro activity against Cryptococcus neoformans and Cryptococcus gattii. Antimicrob Agents Chemother. 2016;60(4):2528–2531. doi: 10.1128/AAC.02770-15
- Schell WA, Jones AM, Garvey EP, et al. Fungal CYP51 inhibitors VT-1161 and VT-1129 exhibit strong in vitro activity against Candida glabrata and C. krusei isolates clinically resistant to azole and echinocandin antifungal compounds. Antimicrob Agents Chemother. 2017;61(3):e01817–16. doi: 10.1128/AAC.01817-16
- Wiederhold NP, Patterson HP, Tran BH, et al. Fungal-specific Cyp51 inhibitor VT-1598 demonstrates in vitro activity against candida and Cryptococcus species, endemic fungi, including Coccidioides species, Aspergillus species and Rhizopus Arrhizus. J Antimicrob Chemother. 2018;73(2):404–408. doi: 10.1093/jac/dkx410
- Neoh CF, Jeong W, Kong DC, Slavin MA. The antifungal pipeline for invasive fungal diseases: what does the future hold? Expert Rev Anti Infect Ther. 2023;21(6):577–594. doi: 10.1080/14787210.2023.2203383
- Sagatova AA. Strategies to better target fungal squalene monooxygenase. J Fungi. 2021;7(1):49. doi: 10.3390/jof7010049
- Deng Q, Li Y, He W, et al. A polyene macrolide targeting phospholipids in the fungal cell membrane. Nature. 2025;640(8059):743–751. doi: 10.1038/s41586-025-08678-9
- Mor V, Rella A, Farnoud AM, et al. Identification of a new class of antifungals targeting the synthesis of fungal sphingolipids. mBio. 2015;6(3):e00647. doi: 10.1128/mBio.00647-15
- Zhen C, Lu H, Jiang Y. Novel promising antifungal target proteins for conquering invasive fungal infections. Front Microbiol. 2022;13:911322. doi: 10.3389/fmicb.2022.911322
- Wu X, Gong X, Xie T. Mechanisms of aureobasidin A inhibition and drug resistance in a fungal IPC synthase complex. Nat Commun. 2025;16(1):5010. doi: 10.1038/s41467-025-60423-y
- Mandala SM, Thornton RA, Rosenbach M, et al. Khafrefungin, a novel inhibitor of sphingolipid synthesis. J Biol Chem. 1997;272(51):32709–32714. doi: 10.1074/jbc.272.51.32709
- Iyer KR, Li SC, Revie NM, et al. Identification of triazenyl indoles as inhibitors of fungal fatty acid biosynthesis with broad-spectrum activity. Cell Chem Biol. 2023;30(7):795–810.e8. doi: 10.1016/j.chembiol.2023.06.005
- Laakso JA, Raulli R, McElhaney-Feser GE, et al. CT2108A and B: new fatty acid synthase inhibitors as antifungal agents. J Nat Prod. 2003;66(8):1041–1046. doi: 10.1021/np030046g
- Blankenship JR, Fanning S, Hamaker JJ, Mitchell AP. An extensive circuitry for cell wall regulation in Candida albicans. PLoS Pathog. 2010;6(2):e1000752. doi: 10.1371/journal.ppat.1000752
- Reinoso-Martín C, Schüller C, Schuetzer-Muehlbauer M, Kuchler K. The yeast protein kinase C cell integrity pathway mediates tolerance to the antifungal drug caspofungin through activation of Slt2p mitogen-activated protein kinase signaling. Eukaryot Cell. 2003;2(6):1200–1210. doi: 10.1128/EC.2.6.1200-1210.2003
- Jung SI, Rodriguez N, Irrizary J, et al. Yeast casein kinase 2 governs morphology, biofilm formation, cell wall integrity, and host cell damage of Candida albicans. PLoS One. 2017;12(11):e0187721. doi: 10.1371/journal.pone.0187721
- Puumala E, Nandakumar M, Yiu B, et al. Structure-guided optimization of small molecules targeting Yck2 as a strategy to combat Candida albicans. Nat Commun. 2025;16(1):2156. doi: 10.1038/s41467-025-57346-z
- Robbins N, Uppuluri P, Nett J, et al. Hsp90 governs dispersion and drug resistance of fungal biofilms. PLoS Pathog. 2011;7(9):e1002257. doi: 10.1371/journal.ppat.1002257
- Yuan R, Tu J, Sheng C, et al. Effects of Hsp90 inhibitor ganetespib on inhibition of azole-resistant Candida albicans. Front Microbiol. 2021;12:680382. doi: 10.3389/fmicb.2021.680382
- Tu B, Yin G, Li H. Synergistic effects of vorinostat (SAHA) and azoles against Aspergillus species and their biofilms. BMC Microbiol. 2020;20(1):28. doi: 10.1186/s12866-020-1718-x
- Zheng YQ, Pan KS, Latgé JP, et al Calcineurin A is essential in the regulation of asexual development, stress responses and pathogenesis in Talaromyces marneffei. Front Microbiol. 2020;10:3094. doi: 10.3389/fmicb.2019.03094
- Steinbach WJ, Cramer RA Jr, Perfect BZ, et al. Calcineurin controls growth, morphology, and pathogenicity in Aspergillus fumigatus. Eukaryot Cell. 2006;5(7):1091–1103. doi: 10.1128/EC.00139-06
- Rivera A, Young Lim W, Park E, et al. Enhanced fungal specificity and in vivo therapeutic efficacy of a C-22-modified FK520 analog against C. neoformans. mBio. 2023;14(5):e0181023. doi: 10.1128/mbio.01810-23
- Ballou LM, Lin RZ. Rapamycin and mTOR kinase inhibitors. J Chem Biol. 2008;1(1-4):27–36. doi: 10.1007/s12154-008-0003-5
- Utsumi T, Matsuzaki K, Kiwado A, et al. Identification and characterization of protein Nmyristoylation occurring on four human mitochondrial proteins, SAMM50, TOMM40, MIC19, and MIC25. PLoS ONE. 2018;13(11):e0206355. doi: 10.1371/journal.pone.0206355
- Javid S, Ather H, Hani U, et al. Discovery of novel myristic acid derivatives as n-myristoyltransferase inhibitors: design, synthesis, analysis, computational studies and antifungal activity. Antibiotics. 2023;12(7):1167. doi: 10.3390/antibiotics12071167
- Yeates C. Icofungipen (PLIVA). Curr Opin Investig Drugs. 2005;6(8):838–844.
- Shao Y, Molestak E, Su W, et al. Sordarin — an anti-fungal antibiotic with a unique modus operandi. Br J Pharmacol. 2022;179(6):1125–1145. doi: 10.1111/bph.15724
- Parish CA, Smith SK, Calati K, et al. Isolation and structure elucidation of parnafungins, antifungal natural products that inhibit mRNA polyadenylation. J Am Chem Soc. 2008;130(22):7060–7066. doi: 10.1021/ja711209p
- Qiao J, Gao P, Jiang X, Fang H. In vitro antifungal activity of farnesyltransferase inhibitors against clinical isolates of Aspergillus and Candida. Ann Clin Microbiol Antimicrob. 2013;12:37. doi: 10.1186/1476-0711-12-37
- du Pre S., Birch M., Law D., et al. The dynamic influence of Olorofim (F901318) on the cell morphology and organization of living cells of Aspergillus fumigatus. J Fungi. 2020;6:47. doi: 10.3390/jof6020047
- Wiederhold NP. Pharmacodynamics, mechanisms of action and resistance, and spectrum of activity of new antifungal agents. J Fungi. 2022;8(8):857. doi: 10.3390/jof8080857
- Odds FC. Genomics, molecular targets and the discovery of antifungal drugs. Rev Iberoam Micol. 2005;22(4):229–237. doi: 10.1016/s1130-1406(05)70048-6
- Gabriel I. 'Acridines' as new horizons in antifungal treatment. Molecules. 2020;25(7):1480. doi: 3390/molecules25071480
Дополнительные файлы

