An efficient method for the analytical study of linear and nonlinear time-fractional partial differential equations with variable coefficients

Cover Page
  • Authors: Liaqat M.I.1,2, Akgül A.3,4,5, Prosviryakov E.Y.6,7,8,9
  • Affiliations:
    1. Government College University
    2. National College of Business Administration & Economics
    3. Lebanese American University
    4. Siirt University
    5. Near East University
    6. Ural Federal University
    7. Institute of Engineering Science, RAS (Ural Branch)
    8. Urals State University of Railway Transport
    9. Udmurt Federal Research Center, RAS (Ural Branch)
  • Issue: Vol 27, No 2 (2023)
  • Pages: 214-240
  • Section: Differential Equations and Mathematical Physics
  • URL: https://medbiosci.ru/1991-8615/article/view/145899
  • DOI: https://doi.org/10.14498/vsgtu2009
  • ID: 145899

Cite item

Abstract

The residual power series method is effective for obtaining approximate analytical solutions to fractional-order differential equations. This method, however, requires the derivative to compute the coefficients of terms in a series solution. Other well-known methods, such as the homotopy perturbation, the Adomian decomposition, and the variational iteration methods, need integration. We are all aware of how difficult it is to calculate the fractional derivative and integration of a function. As a result, the use of the methods mentioned above is somewhat constrained. In this research work, approximate and exact analytical solutions to time-fractional partial differential equations with variable coefficients are obtained using the Laplace residual power series method in the sense of the Gerasimov–Caputo fractional derivative. This method helped us overcome the limitations of the various methods. The Laplace residual power series method performs exceptionally well in computing the coefficients of terms in a series solution by applying the straightforward limit principle at infinity, and it is also more effective than various series solution methods due to the avoidance of Adomian and He polynomials to solve nonlinear problems. The relative, recurrence, and absolute errors of the three problems are investigated in order to evaluate the validity of our method. The results show that the proposed method can be a suitable alternative to the various series solution methods when solving time-fractional partial differential equations.

About the authors

Muhammad Imran Liaqat

Government College University; National College of Business Administration & Economics

Email: imranliaqat50@yahoo.com
ORCID iD: 0000-0002-5732-9689

PhD Student, Abdus Salam School of Mathematical Sciences; Lecturer, Dept. of Mathematics;

Pakistan, 54600, Lahore

Ali Akgül

Lebanese American University; Siirt University; Near East University

Author for correspondence.
Email: aliakgul00727@gmail.com
ORCID iD: 0000-0001-9832-1424

PhD in Math, Full Professor, Dept. of Computer Science and Mathematics; Dept. of Mathematics, Art and Science Faculty; Dept. of Mathematics, Mathematics Research Center

Lebanon, Lebanon, 1102 2801, Beirut; Turkey, 56100, Siirt; Turkey, 99138, Nicosia

Evgenii Yu. Prosviryakov

Ural Federal University; Institute of Engineering Science, RAS (Ural Branch); Urals State University of Railway Transport; Udmurt Federal Research Center, RAS (Ural Branch)

Email: evgen_pros@mail.ru
ORCID iD: 0000-0002-2349-7801

Dr. Phys. & Math. Sci., Dept. of Information Technologies and Control Systems; Sect. of Nonlinear Vortex Hydrodynamics; Dept. of Natural Sciences; Lab. of Physical and Chemical Mechanics

Russian Federation, 620137, Ekaterinburg; 620049, Ekaterinburg; 620034, Ekaterinburg; 426067, Izhevsk

References

  1. Kulish V. V., Lage J. L. Application of fractional calculus to fluid mechanics, J. Fluids Eng., 2002, vol. 124, no. 3, pp. 803–806. DOI: https://doi.org/10.1115/1.1478062.
  2. Tarasov V. E. On history of mathematical economics: Application of fractional calculus, Mathematics, 2019, vol. 7, no. 6, 509. EDN: QUGYQX. DOI: https://doi.org/10.3390/math7060509.
  3. Sun H., Zhang Y., Baleanu D., Chen W., Chen Y. A new collection of real world applications of fractional calculus in science and engineering, Comm. Nonlinear Sci. Numer. Simul., 2018, vol. 64, pp. 213–231. EDN: YGTRMT DOI: https://doi.org/10.1016/j.cnsns.2018.04.019.
  4. Dalir M., Bashour M. Applications of fractional calculus, Appl. Math. Sci., 2010, vol. 4, no. 21, pp. 1021–1032.
  5. Valério D., Machado J. T., Kiryakova V. Some pioneers of the applications of fractional calculus, Fract. Calc. Appl. Anal., 2014, vol. 17, no. 2, pp. 552–578. EDN: SOSIVZ. DOI: https://doi.org/10.2478/s13540-014-0185-1.
  6. Liaqat M. I., Akgül A., Abu-Zinadah H. Analytical investigation of some time-fractional Black–Scholes models by the Aboodh residual power series method, Mathematics, 2023, vol. 11, no. 2, 276. DOI: https://doi.org/10.3390/math11020276.
  7. Traore A., Sene N. Model of economic growth in the context of fractional derivative, Alexandria Eng. J., 2020, vol. 59, no. 6, pp. 4843–4850. DOI: https://doi.org/10.1016/j.aej. 2020.08.047.
  8. Hilfer R., Luchko Y., Tomovski Z. Operational method for the solution of fractional differential equations with generalized Riemann–Liouville fractional derivatives, Fract. Calc. Appl. Anal., 2009, vol. 12, no. 3, pp. 299–318.
  9. Bas E., Ozarslan R. Real world applications of fractional models by Atangana–Baleanu fractional derivative, Chaos, Solitons, Fractals, 2018, vol. 116, pp. 121–125. DOI: https://doi.org/10.1016/j.chaos.2018.09.019.
  10. Almeida R. A Caputo fractional derivative of a function with respect to another function, Comm. Nonlinear Sci. Numer. Simul., 2017, vol. 44, pp. 460–481. DOI: https://doi.org/10.1016/j.cnsns.2016.09.006.
  11. Khan A., Liaqat M. I., Alqudah M. A., Abdeljawad T. Analysis of the conformable temporalfractional Swift–Hohenberg equation using a novel computational technique, Fractals, 2023, vol. 31, no. 4, 2340050. DOI: https://doi.org/10.1142/S0218348X23400509.
  12. Odibat Z., Momani S., Erturk V. S. Generalized differential transform method: Application to differential equations of fractional order, Appl. Math. Comp., 2008, vol. 197, no. 2, pp. 467–477. DOI: https://doi.org/10.1016/j.amc.2007.07.068.
  13. Anjum N., He J.-H. Laplace transform: Making the variational iteration method easier, Appl. Math. Letters, 2019, vol. 92, pp. 134–138. DOI: https://doi.org/10.1016/j.aml.2019.01.016.
  14. Dehestani H., Ordokhani Y., Razzaghi M. Pseudo-operational matrix method for the solution of variable-order fractional partial integro-differential equations, Engineering with Computers, 2021, vol. 37, no. 3, pp. 1791–1806. DOI: https://doi.org/10.1007/s00366-019-00912-z.
  15. Liaqat M. I., Khan A., Alqudah M. A., Abdeljawad T. Adapted homotopy perturbation method with Shehu transform for solving conformable fractional nonlinear partial differential equations, Fractals, 2023, vol. 31, no. 2, 2340027. DOI: https://doi.org/10.1142/S0218348X23400273.
  16. Xiang W., Yan S., Wu J., Niu W. Dynamic response and sensitivity analysis for mechanical systems with clearance joints and parameter uncertainties using Chebyshev polynomials method, Mech. Syst. Signal Proc., 2020, vol. 138, 106596. DOI: https://doi.org/10.1016/j.ymssp.2019.106596.
  17. Liaqat M. I., Etemad S., Rezapour S., Park C. A novel analytical Aboodh residual power series method for solving linear and nonlinear time-fractional partial differential equations with variable coefficients, AIMS Math., 2022, vol. 7, no. 9, pp. 16917–16948. DOI: https://doi.org/10.3934/math.2022929.
  18. Ratas M., Salupere A., Majak J. Solving nonlinear PDEs using the higher order Haar wavelet method on nonuniform and adaptive grids, Math. Model. Anal., 2021, vol. 26, no. 1, pp. 147-169. DOI: https://doi.org/10.3846/mma.2021.12920.
  19. Liaqat M. I., Khan A., Akgül A. Adaptation on power series method with conformable operator for solving fractional order systems of nonlinear partial differential equations, Chaos, Solitons, Fractals, 2022, vol. 157, 111984. DOI: https://doi.org/10.1016/j.chaos.2022.111984.
  20. Zhang Y., Kumar A., Kumar S., et al. Residual power series method for time-fractional Schrödinger equations, J. Nonlinear Sci. Appl., 2016, vol. 9, no. 11, pp. 5821–5829. DOI: https://doi.org/10.22436/jnsa.009.11.10.
  21. El-Ajou A., Arqub O. A., Momani S. Approximate analytical solution of the nonlinear fractional KdV-Burgers equation: A new iterative algorithm, J. Comp. Phys., 2015, vol. 293, pp. 81–95. DOI: https://doi.org/10.1016/j.jcp.2014.08.004.
  22. Saadeh R., Alaroud M., Al-Smadi M., et al. Application of fractional residual power series algorithm to solve Newell–Whitehead–Segel equation of fractional order, Symmetry, 2019, vol. 11, no. 12, 1431. DOI: https://doi.org/10.3390/sym11121431.
  23. Eriqat T., El-Ajou A., Oqielat M. N., et al. A new attractive analytic approach for solutions of linear and nonlinear neutral fractional pantograph equations, Chaos, Solitons, Fractals, 2020, vol. 138, 109957. DOI: https://doi.org/10.1016/j.chaos.2020.109957.
  24. Hesameddini E., Rahimi A. Solving fractional partial differential equations with variable coefficients by the reconstruction of variational iteration method, Z. Naturforsch., A, 2015, vol. 70, no. 5, pp. 375–382. DOI: https://doi.org/10.1515/zna-2015-1017.
  25. Keskin Y., Karaoglu O., Servi S. The approximate solution of high-order linear fractional differential equations with variable coefficients in terms of generalized Taylor polynomials, Math. Comput. Appl., 2011, vol. 16, no. 3, pp. 617–629. DOI: https://doi.org/10.3390/mca16030617.
  26. Sarwar S., Alkhalaf S., Iqbal S., Zahid M. A. A note on optimal homotopy asymptotic method for the solutions of fractional order heat-and wave-like partial differential equations, Comp. Math. Appl., 2015, vol. 70, no. 5, pp. 942–953. DOI: https://doi.org/10.1016/j.camwa.2015.06.017.
  27. Rostamy D., Karimi K. Bernstein polynomials for solving fractional heat- and wave-like equations, Fract. Calc. Appl. Anal., 2012, vol. 15, no. 4, pp. 556–571. DOI: https://doi.org/10.2478/s13540-012-0039-7.
  28. Bulut H., Baskonus H. M., Tuluce S. The solutions of partial differential equations with variable coefficient by Sumudu transform method, AIP Conf. Proc., 2012, vol. 1493, pp. 91–95. DOI: https://doi.org/10.1063/1.47654751.
  29. Nadeem M., Li F., Ahmad H. Modified Laplace variational iteration method for solving fourth-order parabolic partial differential equation with variable coefficients, Comp. Math. Appl., 2019, vol. 78, no. 6, pp. 2052–2062. DOI: https://doi.org/10.1016/j.camwa.2019.03.053.
  30. Dehghan M., Manafian J. The solution of the variable coefficients fourth-order parabolic partial differential equations by the homotopy perturbation method, Z. Naturforsch., A, 2009, vol. 64, no. 7–8, pp. 420–430. DOI: https://doi.org/10.1515/zna-2009-7-803.
  31. Elzaki T. M., Ezaki S. M. On the Elzaki transform and ordinary differential equation with variable coefficients, Adv. Theor. Appl. Math., 2011, vol. 6, no. 1, pp. 41–46.
  32. Khan H., Shah R., Kumam P., Arif M. Analytical solutions of fractional-order heat and wave equations by the natural transform decomposition method, Entropy, 2019, vol. 21, no. 6, 597. DOI: https://doi.org/10.3390/e21060597.
  33. Khalouta A., Kadem A. A new computational for approximate analytical solutions of nonlinear time-fractional wave-like equations with variable coefficients, AIMS Math., 2020, vol. 5, no. 1, pp. 1–14. DOI: https://doi.org/10.3934/math.2020001.
  34. Silva F. S., Moreira D. M., Moret M. A. Conformable Laplace transform of fractional differential equations, Axioms, 2018, vol. 7, no. 3, 55. DOI: https://doi.org/10.3390/axioms7030055.
  35. Prakasha D. G., Veeresha P., Baskonus H. M. Residual power series method for fractional Swift-Hohenberg equation, Fractal Fract., 2019, vol. 3, no. 1, 9. DOI: https://doi.org/10.3390/fractalfract3010009.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. The approximate and exact results of \(\aleph(\theta_1,\omega)\) (a), \(\aleph(\theta_1,\theta_2,\theta_3,\omega)\) (b), and \(\aleph(\theta_1,\theta_2,\omega)\) (c) for various amounts of \(\beta\) in the range \(\omega\in[0,1.0]\), when \(\theta_1=0.5\) (a), \(\theta_1=\theta_2=\theta_3=0.5\) (b), and \(\theta_1=\theta_2=0.5\) (c)

Download (353KB)
3. Figure 2. The 2D curves of the Abs-E graph of \(\aleph(\theta_1,\omega)\) (a), \(\aleph(\theta_1,\theta_2,\theta_3,\omega)\) (b), and \(\aleph(\theta_1,\theta_2,\omega)\) (c) for the approximate finding obtained through seven iterations and the exact result in the range \(\omega\in[0,0.5]\), when \(\theta_1=0.25\) (a), \(\theta_1=\theta_2=\theta_3=0.25\) (b), and \(\theta_1=\theta_2=0.25\) (c)

Download (102KB)
4. Figure 3. The 2D curves of the Rel-E graph of \(\aleph(\theta_1,\omega)\) (a), \(\aleph(\theta_1,\theta_2,\theta_3,\omega)\) (b), and \(\aleph(\theta_1,\theta_2,\omega)\) (c) for the approximate finding obtained through seven iterations and the exact result in the range \(\omega\in[0,0.5]\), when \(\theta_1=0.25\) (a), \(\theta_1=\theta_2=\theta_3=0.25\) (b), and \(\theta_1=\theta_2=0.25\) (c)

Download (102KB)
5. Figure 4. The 3D plots of the Abs-E of \(\aleph(\theta_1,\omega)\) (a), \(\aleph(\theta_1,\theta_2,\theta_3,\omega)\) (b), and \(\aleph(\theta_1,\theta_2,\omega)\) (c) for the approximate finding obtained through seven iterations and exact result in the ranges \(\omega\in[0,0.5]\) and \(\theta_1\in[0,0.5]\), when \(\theta_2=\theta_3=0.25\) (b), and \(\theta_2=0.25\) (c)

Download (808KB)
6. Figure 5. The 3D plots of the Rel-E of \(\aleph(\theta_1,\omega)\) (a), \(\aleph(\theta_1,\theta_2,\theta_3,\omega)\) (b), and \(\aleph(\theta_1,\theta_2,\omega)\) (c) for the approximate finding obtained through seven iterations and exact result in the ranges \(\omega\in[0,0.5]\) and \(\theta_1\in[0,0.5]\), when \(\theta_2=\theta_3=0.25\) (b), and \(\theta_2=0.25\) (c)

Download (778KB)

Copyright (c) 2023 Authors; Samara State Technical University (Compilation, Design, and Layout)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).