On the completeness of a pair of biorthogonally conjugated systems of functions


Cite item

Full Text

Abstract

In this paper we studied the spectral problem for an ordinary second order differential equation on a finite interval with a discontinuous coefficient of the highest derivative. At the ends of the segment the boundary conditions of the first kind are given. We found eigenvalues with their asymptotic behavior as the roots of the transcendental equation. The system of eigenfunctions is the trigonometric sine on one half of the segment, and the hyperbolic sine on the other. The system of eigenfunctions is not orthogonal in the space of square integrable functions. The corresponding biorthogonal system of functions was built as a solution to the dual problem. In the proof of the completeness of the biorthogonal system we used well known Keldysh theorem about the completeness of the eigenfunctions system of a nonselfadjoint operator.

About the authors

Alfira A Gimaltdinova

Samara State Academy of Social and Humanities

Email: alfiragimaltdinova@mail.ru
(Cand. Phys. & Math. Sci.; alfiragimaltdinova@mail.ru; Corresponding Author), Doctoral Candidate, Dept. of Mathematics and methods of teaching 65/67, M. Gorky st., Samara, 443099, Russian Federation

Ksenija V Kurman

Sterlitamak Branch of Bashkir State University

Email: kseniakurman@yandex.ru
Postgraduate Student, Dept. of Mathematical Analysis 47 a, Lenin st., Sterlitamak, 453103, Russian Federation

References

  1. Гималтдинова А. А., Курман К. В. О полноте одной пары биортогонально сопряженных систем функций / Четвертая международная конференция «Математическая физика и ее приложения»: материалы конф.; ред. чл.-корр. РАН И. В. Волович; д.ф.м.н., проф. В. П. Радченко. Самара: СамГТУ, 2014. С. 122-123.
  2. Ильин В. А. О разрешимости смешанных задач для гиперболического и параболического уравнений // УМН, 1960. Т. 15, № 2(92). С. 97-154.
  3. Сабитов К. Б. Задача Дирихле для уравнений смешанного типа в прямоугольной области // Докл. РАН, 2007. Т. 413, № 1. С. 23-26.
  4. Сабитов К. Б., Мелишева Е. П. Задача Дирихле для нагруженного уравнения смешанного типа в прямоугольной области // Изв. вузов. Матем., 2013. № 7. С. 62-76.
  5. Ломов И. С. Негладкие собственные функции в задачах математической физики // Диффер. уравн. Т. 47, № 3. С. 358-365.
  6. Ломов И. С. Пример разрывного оператора, имеющего разрывный сопряженный. Свойство базисности / Задачи математической физики и спектральная теория операторов: Сб. ст. / Научные труды/ Московский энергетический ин-т, Т. 215. М.: МЭИ, 1989.С. 46-50.
  7. Митрохин С. И. Спектральная теория операторов: гладкие, разрывные суммируемые коэффициенты. М.: Интуит, 2009. 364 с.
  8. Егоров И. Е. Пятков С. Г., Попов С. В. Неклассические дифференциально-операторные уравнения. Новосибирск: Наука, 2000. 336 с.
  9. Келдыш М. В. О полноте собственных функций некоторых классов несамосопряженных линейных операторов // УМН, 1971. Т. 26, № 4(160). С. 15-41.
  10. Гельфанд И. М., Шилов Г. Е. Пространства основных и обобщенных функций. М.: Наука, 1958. 308 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2015 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).