Критерий однозначной разрешимости спектральной задачи Дирихле в цилиндрической области для многомерных гиперболических уравнений с волновым оператором


Цитировать

Полный текст

Аннотация

В цилиндрической области евклидова пространства для многомерного гиперболического уравнения с волновым оператором рассматривается спектральная задача Дирихле с однородными краевыми условиями. Решение ищется в виде разложения по многомерным сферическим функциям. Доказаны теоремы существования и единственности решения. Получены условия однозначной разрешимости поставленной задачи, которые существенно зависят от «высоты» цилиндра.

Об авторах

Серик Аймурзаевич Алдашев

Казахский национальный педагогический университет им. Абая

Email: aldash51@mail.ru
(д.ф.-м.н., проф.; aldash51@mail.ru), заведующий кафедрой, каф. фундаментальной и прикладной математики Казахстан, 480100, Алматы, пр. Достык, 114

Список литературы

  1. Моисеев Е. И. Уравнения смешанного типа со спектральным параметром. М.: МГУ, 1988. 150 с.
  2. Кальменов Т. Ш. Краевые задачи для линейных уравнений в частных производных гиперболического типа. Шымкент: Гылым, 1993. 328 с.
  3. Хе К. Ч. О собственных функциях однородных краевых задач для эллиптического уравнения с операторами Бесселя / Неклассич. уравнения матем. физ. Новосибирск: ИМ СО РАН, 2000. 128-135 с.
  4. Сабитов К. Б., Ильясов Р. Р. О некорректности краевых задач для одного класса гиперболических уравнений // Изв. вузов. Матем., 2001. № 5. С. 59-63.
  5. Алдашев С. А. Спектральные задачи Дарбу-Проттера для одного класса многомерных гиперболических уравнений // Укр. мат. ж., 2003. Т. 55, № 1. С. 100-107.
  6. Алдашев С. А. Критерий существования собственных функций спектральной задачи Дарбу-Проттера для вырождающихся многомерных гиперболических уравнений // Диффер. уравн., 2005. Т. 41, № 6. С. 795-801.
  7. Алдашев С. А. Критерий существования собственных функций спектральных задач Дарбу-Проттера для многомерного уравнения Эйлера-Дарбу-Пуассона // Изв. вузов. Матем., 2006. № 2. С. 3-10.
  8. Михлин С. Г. Многомерные сингулярные интегралы и интегральные уравнения. М.: Физматгиз, 1962. 254 с.
  9. Камке Э. Справочник по обыкновенным дифференциальным уравнениям. М.: Наука, 1965. 703 с.
  10. Бейтмен Г., Эрдейи А. Высшие трансцендентные функции. Т. 2. М.: Наука, 1966. 296 с.
  11. Колмогоров А. Н., Фомин С. В. Элементы теории функций и функционального анализа. М.: Наука, 1972. 496 с.
  12. Тихонов А. Н., Самарский А. А. Уравнения математической физики. М.: Наука, 1972. 736 с.
  13. Алдашев С. А. Корректность задачи Дирихле в цилиндрической области для многомерных гиперболических уравнений с волновым оператором // Доклады Адыгской (Черкесской) Международной академии наук, 2011. Т. 13, № 1. С. 21-29.
  14. Смирнов В. И. Курс высшей математики. Т. 4, Ч. 2. М.: Наука, 1981. 550 с.
  15. Aldashev S. A. The Well-Posedness of the Dirichlet Problem in the Cylindric Domain for the Multidimensional Wave Equation // Mathematical Problems in Engineering, 2010. vol. 2010, 653215. 7 pp. doi: 10.1155/2010/653215.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Самарский государственный технический университет, 2014

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).