Heat transfer simulation in stirring boundary layer using the semiempirical turbulence theory


Cite item

Full Text

Abstract

The dynamic and thermal boundary layer equations are derived for the stirring boundary layer using Prandtl semiempirical turbulence theory. Based on definition of the thermal perturbations front and supplementary boundary conditions the method of constructing an exact analytical solution of the boundary value problem simulating the formation of the thermal boundary layer in the dynamic boundary layer is obtained and applied to find the exact analytical solutions of thermal boundary layer differential equation almost with a given degree of accuracy. The velocity distribution in stirring dynamic boundary layer and its thickness were taken by the well - known relations, found from experiments. The supplementary conditions fulfillment is equivalent to the fulfillment of the initial differential equation in the boundary point and in the thermal perturbations front. So, the more supplementary conditions we use the better fulfillment of the initial differential equation in the thermal boundary layer we have, because the range of thermal perturbations front changing includes the whole range of transverse spatial variable changing. Analysis of calculations results allows to conclude that the layer thickness within a stirring dynamic boundary layer more than twice less than thermal layer thickness in a laminar dynamic boundary layer. The study of the received in this paper criteria-based equation shows that the difference of heat transfer coefficients in the range 20000 ≤ Re ≤ 30000 of the Reynolds number on the experimental not exceed 7 %.

About the authors

Igor V Kudinov

Samara State Technical University

Email: igor-kudinov@bk.ru
(Cand. Techn. Sci.; igor-kudinov@bk.ru), Associate Professor, Dept. of Theoretical Fundamentals of Heat-Engineering and Hydromechanics 244, Molodogvardeyskaya st., Samara, 443100, Russian Federation

Anastasiya N Branfileva

Samara State Technical University

Email: OV_branfilevaAN@samaragilpro.ru
Assistant, Dept. of Theoretical Fundamentals of Heat-Engineering and Hydromechanics 244, Molodogvardeyskaya st., Samara, 443100, Russian Federation

Anton V Eremin

Samara State Technical University

Email: a.v.eremin@list.ru
(Cand. Techn. Sci.; a.v.eremin@list.ru; Corresponding Author), Associate Professor, Dept. of Theoretical Fundamentals of Heat-Engineering and Hydromechanics 244, Molodogvardeyskaya st., Samara, 443100, Russian Federation

Marina P Skvortsova

Samara State Technical University

Email: marina.dorozhkina.88@mail.ru
Assistant, Dept. of Theoretical Fundamentals of Heat-Engineering and Hydromechanics 244, Molodogvardeyskaya st., Samara, 443100, Russian Federation

References

  1. Юдаев Б. Н. Теплопередача. М.: Высшая школа, 1981. 319 с.
  2. Лойцянский Л. Г. Механика жидкости и газа. М.: Дрофа, 2003. 840 с.
  3. Исаев С. И., Кожинов И. А., Кофанов В. И. и др. Теория тепломассообмена / ред. А. И. Леонтьев. М.: Высшая школа, 1979. 496 с.
  4. Михеев М. А., Михеева И. М. Основы теплопередачи. М.: Энергия, 1977. 344 с.
  5. Прибытков И. А., Левицкий И. А. Теоретические основы теплотехники. М.: Академия, 2004. 465 с.
  6. Шлихтинг Г. Теория пограничного слоя. М.: Наука, 1969. 742 с.
  7. Кудинов В. А., Стефанюк Е. В. Получение аналитических решений уравнений гидродинамического и теплового пограничных слоев на основе введения дополнительных граничных условий // ТВТ, 2010. Т. 48, № 2. С. 290-302.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2014 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).