Investigation of the Influence of Inertial Mass Suspension Structure of Glass Micromechanical Accelerometer on its Properties

Cover Page

Cite item

Full Text

Abstract

The paper deals with a promising MEMS accelerometer made of radiation-resistant glass using the technology of pulling from glass rods and tubes. An alternative structural scheme of a pendulum accelerometer with an inertial mass suspension formed from glass structures of two shapes - hexagonal and tubular - is developed. By using the finite-element modeling methods, a comparative analysis of mechanical characteristics of MEMS models with different inertial mass suspensions has been performed, namely, for both models stresses and deformations at accelerations in the range up to 50g have been calculated. The calculation of natural frequencies was also performed. The analysis of the obtained results demonstrated that both schemes have close values of these characteristics, but a detailed consideration of the stress distribution in the suspension structures allows us to conclude that the hexagonal structure is more resistant to failure. The possible sensitivity of the sensor for two variants of the inertial mass suspension is also evaluated. It is proved that in both cases at accelerations up to 50g the capacitive sensor has a sufficient range of capacitance variation for acceleration registration.

About the authors

M. A. Barulina

Precision Mechanics and Control Institute, Russian Academy of Sciences

Email: marina@barulina.ru
SPIN-code: 174006
Scopus Author ID: 51161080800
ResearcherId: B-2919-2016
24, Rabochaya St., Saratov, 410028

A. V. Golikov

Precision Mechanics and Control Institute, Russian Academy of Sciences

Email: golikov@iptmuran.ru
SPIN-code: 8708
Scopus Author ID: 57213826231
ResearcherId: AAF-5651-2021
24, Rabochaya St., Saratov, 410028

E. V. Pankratova

Precision Mechanics and Control Institute, Russian Academy of Sciences

Email: pankratova@iptmuran.ru
SPIN-code: 909223
Scopus Author ID: 57193550443
ResearcherId: ACY-2638-2022
24, Rabochaya St., Saratov, 410028

O. V. Markelova

Precision Mechanics and Control Institute, Russian Academy of Sciences

Email: markelova@iptmuran.ru
SPIN-code: 994464
Scopus Author ID: 57215606494
24, Rabochaya St., Saratov, 410028

References

  1. Raspopov, V. Y. (2002), "Mikromekhanicheskie pribory Uchebnoe posobie" [Micromechanical devices Tutorial], Tula State University, Tula, Russia.
  2. Dzhashitov, V. E. and Pankratov, V. M. (2005), "Datchiki, pribory i sistemy aviakosmicheskogo priborostroeniya v usloviyah teplovyh vozdejstvij" [Sensors, instruments and systems for aerospace instrumentation under thermal conditions], St. Petersburg, Russia.
  3. Kochurina, E. S., Anchutin, S. A. and Kalugin, V. V. (2022), "Development of a sensitive element of a micromechanical accelerometer", Izv. Vuzov. Elektronika, vol. 27, no. 1, pp. 59-67.
  4. Kostenko, V. D. and Barulina, M. A. (2023), "Toward the use of radio-resistant glass for the fabrication of a micromechanical accelerometer". V sbornike: Mezhdunarodnyj seminar "Navigaciya i upravlenie dvizheniem" (NMC 2023) [Proceedings of the 25th Conference of Young Scientists "Navigation and Motion Control"], Saint Petersburg, pp. 21-24.
  5. Kostenko, V. D., Barulina, M. A. and Shcherbakov, A. V. (2023), "Prospects for glass micro-mechanical accelerometers for space satellites". RusNanoSat-2023: Sbornik tezisov dokladov pyatogo rossijskogo simpoziuma po nanosputnikam s mezhdunarodnym uchastiem [Proceedings of the 5th Russian symposium on nanosatellites with international participation], Samara, Russia, pp. 132-134.
  6. GOST 23718-2014. Intergovernmental standard. Passenger and transporter airplanes and helicopters. Permissible vibration levels in cabins and cockpits and methods of vibration measurement. Replacing GOST 2371-93. Introduced - 2015-01-01, M: Standartinform 2019, p. 20.
  7. Bezmozgij, I. M., Sofinskij, A. N. and Chernyagin, A. G. (2014). "Modeling in problems of vibration resistance of rocket-space structures". Kosmicheskaya tekhnika i tekhnologii, no. 3 (6), pp. 71-80.
  8. Paing, S., Kalugin, V. and Kochurina, E. (2023), "Modeling and optimization of MEMS comb type capacitive acceleration sensor". Proc. Univ. Electronics, vol. 28, no. 4, pp. 452-460.
  9. Topil'skij, V. B. (2012), "Mikroelektronnye izmeritel'nye preobrazovateli: Ucheb. posobie" [Microelectronic measuring transducers: textbook.]. M.: BINOM. Laboratoriya znanij.
  10. Tazhibaev, K. T., Tazhibaev, D. K. and Akmatalieva, M. S. (2018), "Identification of residual and acting stresses by polarization-acoustic method". Mezhdunarodnyj zhurnal gumanitarnyh i estestvennyh nauk, no. 4, pp. 134-139.
  11. Birger, I. A. (1963), "Ostatochnye napryazheniya" [Residual stresses], Moscow, Russia.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).