Деформации в нестационарной стадии прессования прутка из алюминиевого сплава с малым коэффициентом вытяжки

Обложка

Цитировать

Полный текст

Аннотация

Введение. Отмечено, что прессование является основным заготовительным процессом в обработке давлением алюминиевых сплавов. При этом сам процесс обладает таким недостатком, как нестационарность пластического течения металла. Целью работы является установление уровня деформационной неоднородности передней части отпрессованного прутка путем численного моделирования с применением метода конечных элементов. Задачами исследования являются формулировка граничных условий процесса прессования, получение решения и оценка степени неоднородности. Методы исследования: для оценки деформированного состояния применили метод конечных элементов. Последовательность действий включала создание начальной формы очага деформации и конфигурации инструмента. Взаимное перемещение инструмента и деформируемого материала задано с помощью соответствующих граничных условий. Деформируемая среда – пластический материал со степенным упрочнением, физико-механические свойства соответствуют алюминиевому сплаву серии 6000. Результаты и обсуждение. Выявлено, что степень деформации в передней части отпрессованного изделия распределена крайне неравномерно, различия зафиксированы выше 300 %. Построены зависимости распределения степени деформации в поперечных сечениях прутка в зависимости от расстояния от переднего торца при различных относительных радиальных координатах. Выявлено, что центральные слои прутка приобретают постоянный уровень степени деформации раньше, чем периферийные слои, т. е. для них стационарность процесса достигается при меньшем перемещении металла. Областью применения результатов работы является технологическая проработка рационального раскроя металла на финишной стадии прессового передела алюминиевых сплавов с целью более рационального использования возвратных отходов. Выводы. В процессе прессования с малым коэффициентом вытяжки степень деформации распределяется неравномерно как по поперечному сечению пресс-изделия, так и по его длине. В нестационарной начальной стадии прессования передняя часть прутка остается слабо деформированной как на периферии, так и в центре, что часто вынуждает отправлять ее на переплав вследствие недостаточно проработанной структуры металла. В то же время, если установить ограничения на минимально возможную степень деформации, то по результатам расчета методом конечных элементов можно установить минимальную длину удаляемого металла, за счет чего удастся снизить массу отходов, направляемых в переплав.

Об авторах

Ю. Н. Логинов

Email: j.n.loginov@urfu.ru
доктор техн. наук, профессор; 1. Уральский Федеральный университет, ул. Мира, 19, г. Екатеринбург, 620002, Россия; 2. Институт физики металлов имени М.Н. Михеева УрО РАН, ул. Софьи Ковалевской, 18, г. Екатеринбург, 620137, Россия; j.n.loginov@urfu.ru

Г. В. Шимов

Email: g.v.shimov@urfu.ru
канд. техн. наук, доцент, Уральский Федеральный университет, ул. Мира, 19, г. Екатеринбург, 620002, Россия, g.v.shimov@urfu.ru

Н. И. Бушуева

Email: m0rgondagen@yandex.ru
Уральский Федеральный университет, ул. Мира, 19, г. Екатеринбург, 620002, Россия, m0rgondagen@yandex.ru

Список литературы

  1. Energy dissipation characteristics modelling for hot extrusion forming of aluminum-alloy components / H. Li, Y. Wu, H. Cao, F. Lu, C. Li // International Journal of Precision Engineering and Manufacturing – Green Technology. – 2022. – P. 1–23. – doi: 10.1007/s40684-021-00410-y.
  2. Effect of spinning deformation on microstructure evolution and mechanical properties of Al-Zn-Mg-Cu (7075) alloy / F. Zheng, H. Chen, W. Wang, R. Liu, J. Lian // Journal of Materials Engineering and Performance. – 2022. – doi: 10.1007/s11665-022-06705-8.
  3. Дмитрюк А.И., Григорьев А.А. Совершенствование технологии прессования алюминиевых заготовок // Заготовительные производства в машиностроении. – 2020. – Т. 18, № 8. – С. 353–358.
  4. Li F., Chu G.-n.., Liu X.-j. Deformation division of metal flow behavior during extrusion process of 7075 aluminum alloy // Journal of Central South University of Technology. – 2009. – Vol. 16. – P. 738–742. – doi: 10.1007/s11771-009-0122-3.
  5. Li F., Yuan S., He Z. Effect of guiding angle on metal flow and defects in extrusion deformation // Cailiao Kexue yu Gongyi / Material Science and Technology. – 2007. – Vol. 15, N 1. – P. 15–18.
  6. Бережной В.Л. Анализ и формализация представлений о неравномерности деформации для технологического развития прессования // Технология легких сплавов. – 2013. – № 1. – С. 40–57.
  7. Plastic deformation analysis of accumulative back extrusion / S.C. Yoon, A.V. Nagasekhar, S.-Y. Kang, H.S. Kim // International Journal of Materials Research. – 2009. – Vol. 100 (12). – P. 1715–1719. – doi: 10.3139/146.110236.
  8. Меркулова С.М., Бер Л.Б., Ростова Т.Д. Изменение микроструктуры прутков из сплава 1561 в процессе прессования c увеличенной сдвиговой компонентой // Технология легких сплавов. – 2015. – № 3. – С. 85–89.
  9. Щербель Р.Д., Меркулова С.М. Исследование возможности формирования равномерных по длине механических свойств крупногабаритных полос из сплава МА2-1 пч при прессовании с малыми вытяжками // Технология легких сплавов. – 2012. – № 4. – С. 103–109.
  10. Колмогоров В.Л. Напряжения. Деформации. Разрушение. – М.: Металлургия, 1970. – 229 с.
  11. Логинов Ю.Н., Антоненко Л.В. Изучение напряженно-деформированного состояния для предупреждения образования продольных трещин в прессованных трубах // Цветные металлы. – 2010. – № 5. – С. 119–122.
  12. Hawryluk M., Suliga M., Wieclaw M. Application of physical modeling with the use of soft model materials for the analysis and optimization of metal extrusion processes // Physical Mesomechanics. – 2022. – Vol. 25. – P. 57–71. – doi: 10.1134/s1029959922010076.
  13. Koloskov S., Sidelnikov S., Voroshilov D. Modeling process of semi-continuous extrusion of hollow 6063 aluminum alloy profiles using QForm extrusion // Solid State Phenomena. – 2021. – Vol. 316. – P. 288–294.
  14. Ershov A.A., Kotov V.V., Loginov Yu.N. Capabilities of QForm-extrusion based on an example of the extrusion of complex shapes // Metallurgist. – 2012. – Vol. 55 (9–10). – P. 695–701. – doi: 10.1007/s11015-012-9489-8.
  15. Numerical modeling of the extrusion process of aluminum alloy 6xxx series section / A. Kawalek, T. Bajor, M. Kwapisz, S. Sawicki, J. Borowski // Journal of Chemical Technology and Metallurgy. – 2021. – Vol. 56, iss. 2. – P. 375–381.
  16. The development of grain structure during axisymmetric extrusion of AA3003 aluminum alloys / Y. Mahmoodkhani, M.A. Wells, W.J. Poole, L. Grajales, N. Parson // Metallurgical and Materials Transactions A. – 2015. – Vol. 46, iss. 12. – P. 5920–5932. –doi: 10.1007/s11661-015-3168-x.
  17. Numerical simulation and die structure optimization of an aluminum rectangular hollow pipe extrusion process / X. Wu, G. Zhao, Y. Luan, X. Ma // Materials Science and Engineering: A. – 2006. – Vol. 435–436. – P. 266–274. – doi: 10.1016/j.msea.2006.06.114.
  18. Simulation study on equal channel right angular extrusion process of aluminum alloy 6061 / W. Jiang, L. Wen, H. Yang, M. Hu, P.K.-L. Song // Light Metals 2020. – Cham: Springer, 2020. – P. 433–439. – (Minerals, Metals and Materials Series). – doi: 10.1007/978-3-030-36408-3_61.
  19. Логинов Ю.Н., Полищук Е.Г., Тугбаев Ю.В. Особенности моделирования процесса прессования труб из сплавов на основе циркония // Цветные металлы. – 2018. – № 9. – С. 82–87. – doi: 10.17580/tsm.2018.09.13.
  20. Каргин В.Р., Дерябин А.Ю. О конечно-элементном анализе напряженно-деформированного состояния при прессовании крупногабаритных прутков с малыми вытяжками // Технология легких сплавов. – 2016. – № 3. – С. 62–68.
  21. Каргин В.Р., Дерябин А.Ю. Моделирование температурного поля при прессовании крупногабаритных прутков из труднодеформируемого алюминиевого сплава ENAW2014 с использованием программы Deform-2D // Технология легких сплавов. – 2016. – № 4. – С. 61–67.
  22. Баузер М., Зауер Г., Зигерт К. Прессование: пер. с нем. – М.: Алюсил МВиТ, 2009. – 922 с.
  23. Перлин И.Л., Райтбарг Л.Х. Теория прессования металлов. – М.: Металлургия, 1975. – 447 с.
  24. Dynamic mechanical behavior of 6061 al alloy at elevated temperatures and different strain rates / X. Fan, T. Suo, Q. Sun, T. Wang.// Acta Mechanica Solida Sinica. – 2013. – Vol. 26, N 2. – P. 111–120. – doi: 10.1016/S0894-9166(13)60011-7.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».