Effect of deformation processing on microstructure and mechanical properties of Ti-42Nb-7Zr alloy
- Authors: Eroshenko A.Y.1, Legostaeva E.V.1, Glukhov I.A.1, Uvarkin P.V.1, Tolmachev A.I.1, Luginin N.A.1, Bataev V.A.1, Ivanov I.V.1, Sharkeev Y.P.1
-
Affiliations:
- Issue: Vol 24, No 4 (2022)
- Pages: 206-218
- Section: MATERIAL SCIENCE
- URL: https://medbiosci.ru/1994-6309/article/view/301883
- DOI: https://doi.org/10.17212/1994-6309-2022-24.4-206-218
- ID: 301883
Cite item
Abstract
About the authors
A. Yu. Eroshenko
Email: eroshenko@ispms.ru
Ph.D. (Engineering), Institute of Strength Physics and Materials Science of Siberian Branch Russian Academy of Sciences, Akademicheskiy Av. 2/4, 634055, Tomsk, Russia Federation, eroshenko@ispms.ru
E. V. Legostaeva
Email: lego@ispms.ru
D.Sc. (Engineering), Institute of Strength Physics and Materials Science of Siberian Branch Russian Academy of Sciences, Akademicheskiy Av. 2/4, 634055, Tomsk, Russia Federation, lego@ispms.ru
I. A. Glukhov
Email: gia@ispms.ru
Institute of Strength Physics and Materials Science of Siberian Branch Russian Academy of Sciences, Akademicheskiy Av. 2/4, 634055, Tomsk, Russia Federation, gia@ispms.ru
P. V. Uvarkin
Email: uvarkin@ispms.ru
Institute of Strength Physics and Materials Science of Siberian Branch Russian Academy of Sciences, Akademicheskiy Av. 2/4, 634055, Tomsk, Russia Federation, uvarkin@ispms.ru
A. I. Tolmachev
Email: tolmach@ispms.ru
Institute of Strength Physics and Materials Science of Siberian Branch Russian Academy of Sciences, Akademicheskiy Av. 2/4, 634055, Tomsk, Russia Federation, tolmach@ispms.ru
N. A. Luginin
Email: nikishek90@gmail.com
Institute of Strength Physics and Materials Science of Siberian Branch Russian Academy of Sciences, Akademicheskiy Av. 2/4, 634055, Tomsk, Russia Federation; Tomsk polytechnic university, Lenin Av., 30, 634050, Tomsk, Russia Federation, nikishek90@gmail.com
V. A. Bataev
Email: bataev@corp.nstu.ru
D.Sc. (Engineering), Professor, Novosibirsk State Technical University, 20 Prospekt K. Marksa, Novosibirsk, 630073, Russian Federation, bataev@corp.nstu.ru
I. V. Ivanov
Email: i.ivanov@corp.nstu.ru
Novosibirsk State Technical University, 20 Prospekt K. Marksa, Novosibirsk, 630073, Russian Federation, i.ivanov@corp.nstu.ru
Y. P. Sharkeev
Email: sharkeev@ispms.ru
D.Sc. (Physics and Mathematics), Institute of Strength Physics and Materials Science of Siberian Branch Russian Academy of Sciences, Akademicheskiy Av. 2/4, 634055, Tomsk, Russia Federation; Tomsk polytechnic university, Lenin Av., 30, 634050, Tomsk, Russia Federation, sharkeev@ispms.ru
References
- Niinomi M. Recent metallic materials for biomedical applications // Metallurgical and Materials Transactions A. – 2002. – Vol. 33. – P. 477–486. – doi: 10.1007/s11661-002-0109-2.
- Development of a new β Ti alloy with low modulus and favorable plasticity for implant material / S.X. Liang, X.J. Feng, L.X. Yin, X.Y. Liu, M.Z. Ma, R.P. Liu // Materials Science and Engineering: C. – 2016. – Vol. 61. – P. 338–343. – doi: 10.1016/j.msec.2015.12.076.
- Osteoblast cellular activity on low elastic modulus Ti-24Nb-4Zr-8Sn alloy / K.C. Nune, R.D. Misra, S.J. Li, Y.L. Hao, R. Yang // Dental Materials. – 2017. – Vol. 33. – P. 152–165. – doi: 10.1016/j.dental.2016.11.005.
- Cold rolling deformation characteristic of a biomedical beta type Ti–25Nb–3Zr–2Sn–3Mo alloy plate and its influence on α precipitated phases and room temperature mechanical properties during aging treatment / J. Cheng, J. Li, S. Yu, Z. Du, X. Zhang, W. Zhang, J. Gai, H. Wang, H. Song, Z. Yu // Frontiers in Bioengineering and Biotechnology. – 2020. – Vol. 8. – P. 598529. – doi: 10.3389/fbioe.2020.598529.
- Precipitation of the α-phase in an ultrafine grained beta-titanium alloy processed by severe plastic deformation / T. Li, D. Kent, G. Sha, M.S. Dargusch, J.M. Cairney // Materials Science and Engineering: A. – 2014. – Vol. 605. – P. 144–150. – doi: 10.1016/j.msea.2014.03.044.
- Manufacturing, structure control, and functional testing of Ti–Nb-based SMA for medical application / S. Prokoshkin, V. Bralovski, S. Dubinskiy, Y. Zhukova, V. Sheremetyev, A. Konopatsky, K. Inaekyan // Shape Memory and Superelasticity. – 2016. – Vol. 3. – P. 130–144. – doi: 10.1007/s40830-016-0059-y.
- A thermo-mechanical treatment to improve the superelastic performances of biomedical Ti–26Nb and Ti–20Nb–6Zr (at.%) alloys / F. Sun, Y.L. Hao, S. Nowak, T. Gloriant, P. Laheurte, F. Prima // Journal of the Mechanical Behavior of Biomedical Materials. – 2011. – Vol. 4. – P. 1864–1872. – doi: 10.1016/j.jmbbm.2011.06.003.
- Microstructure and metallic ion release of pure titanium and Ti–13Nb–13Zr alloy processed by high pressure torsion / I. Dimic, I. Cvijovic-Alagic, B. Volker, A. Hohenwarter, R. Pipan, D. Veljovic, M. Rakin, B. Bugarski // Materials and Design. – 2016. – Vol. 91 (5). – P. 340–347. – doi: 10.1016/j.matdes.2015.11.088.
- Mechanical properties and cytotoxic evaluation of the Ti-3Nb-13Zr alloy / S.G. Chneider, C.A. Nunes, S.O. Rogero, O.Z. Higa, J.C. Bressiani // Biomecanica. – 2000. – Vol. 8 (1). – P. 84–87. – doi: 10.5821/sibb.v8i1.1653.
- Deformation mechanism and mechanical properties of a thermomechanically processed β Ti–28Nb–35.4Zr alloy / S. Ozan, J. Lin, Yu. Li, K. Munir, H. Jiang, C. Wen // Journal of the Mechanical Behavior of Biomedical Materials. – 2018. – Vol. 78. – P. 224–234. – doi: 10.1016/j.jmbbm.2017.11.025.
- Cold rolling deformation and annealing behavior of a β-type Ti–34Nb–25Zr titanium alloy for biomedical applications / S. Ozan, J. Lin, Y. Zhang, Yu. Li, C. Wen // Journal of Materials Research and Technology. – 2020. – Vol. 9 (2). – P. 2308-2318. – doi: 10.1016/j.jmrt.2019.12.062.
- Effect of electron beam power density on the structure of titanium under non-vacuum electron-beam treatment / I.V. Ivanov, A. Thoemmes, V.Yu. Skiba, A.A. Ruktuev, I.A. Bataev // Metal Science and Heat Treatment. – 2019. – Vol. 60. – P. 625–632. – doi: 10.1007/s11041-019-00329-x.
- Microstructure and mechanical properties of Ti40Nb alloy after severe plastic deformation / Yu.P. Sharkeev, A.Yu. Eroshenko, I.A. Glukhov, A.I. Tolmachev, Q. Zhu // AIP Conference Proceedings. – 2014. – Vol. 1623. – P. 567–570. – doi: 10.1063/1.4899008.
- ASTM E1382-97. Standard test methods for determining average grain size using semiautomatic and automatic image analysis. – West Conshohocken, PA: ASTM International, 2016. – 24 p.
- Collings E.W. Physical metallurgy of titanium alloys. – Metals Park, OH: American Society for Metals, 1984. – 261 p. – ISBN 9780871701817.
- Composition dependent crystallography of α″-martensite in Ti–Nb-based β-titanium alloy / T. Inamura, J.I. Kim, H.Y. Kim, H. Hosoda, K. Wakashima, S. Miyazaki // Philosophical Magazine. – 2007. – Vol. 87, iss. 23. – P. 3325–3350. – doi: 10.1080/14786430601003874.
- Plastic Deformation of Nanostructured Materials / A.M. Glezer, E.V. Kozlov, N.A. Koneva, N.A. Popova, I.A. Kurzina. – Boca Raton: CRC Press, 2017. – 334 p. – ISBN 9780367573201.
- Thermal stability and latent heat of Nb–rich martensitic Ti-Nb alloys / M. Bonisch, A. Panigrahi, M. Calin, T. Waitz, M. Zehetbauer, W. Skrotzki, J. Eckert // Journal of Alloys and Compounds. – 2017. – Vol. 697. – P. 300–309. – doi: 10.1016/j.jallcom.2016.12.108.
- Banerjee S., Mukhopadhyay P. Phase transformations. – Amsterdam: Elsevier, 2007. – 813 p. – ISBN 9780080548791.
- Effect of thermomechanical treatment on the mechanical and microstructural evolution of a β-type Ti-40.7Zr–24.8Nb alloy / S. Ozan, J. Lin, W. Weng, Y. Zhang, Yu. Li, C. Wen // Bioactive Materials. – 2019. – Vol. 4. – P. 303–311. – doi: 10.1016/j.bioactmat.2019.10.007.
- Biomedical titanium alloys with Young’;s moduli close to that of cortical bone / M. Niinomi, Y. Liu, M. Nakai, H. Lui, H. Li // Regenerative Biomaterials. – 2016. – Vol. 3. – P. 173–185. – doi: 10.1093/rb/rbw016.
Supplementary files
