Введение. Эксплуатационные свойства поверхностей деталей технических систем обеспечиваются на финишных операциях технологического процесса методами поверхностного упрочнения. Несмотря на существующее достаточно большое количество методов поверхностной упрочняющей обработки, многие из них имеют узкую область технологического применения и для своей реализации требуют специальное дорогостоящее оборудование, другие не доведены до стадии широкого практического применения или исчерпали свои технологические возможности. В связи с этим разработка инновационных методов отделочно-упрочняющей обработки поверхностей деталей машин является актуальной задачей. Цель работы – повышение эффективности упрочнения на основе комплексного энергетического воздействия на поверхностный слой ферромагнитных деталей вращающимся магнитным полем и динамическим поверхностным пластическим деформированием. Гипотеза исследования – совмещенное магнитно-силовое воздействие на поверхность ферромагнитной детали способствует измельчению зерен деформируемого металла до наноразмерной величины и обеспечивает увеличение глубины модифицированного (измененного) поверхностного слоя. В работе представлен метод отделочно-упрочняющей обработки, при котором на поверхность ферромагнитной детали одновременно воздействуют концентрированным потоком энергии вращающегося магнитного поля и колеблющимися деформирующими шарами, осуществляющими многократное импульсно-ударное деформирование. При этом индукцию вращающегося магнитного поля, действующего на поверхность детали, выбирают в пределах от 0,10 до 1,20 Тл. Для осуществления метода отделочно-упрочняющей обработки разработан комбинированный инструмент, содержащий: корпус; деформирующие шары, свободно установленные в кольцевой камере; магнитную систему на основе цилиндрических постоянных магнитов из редкоземельных материалов. Магнитная система инструмента предназначена для создания вращающегося магнитного поля, действующего на поверхность ферромагнитной детали и сообщения деформирующим шарам рабочих колебательных движений. В работе исследованы характеристики дислокационных структур, образованных в поверхностном слое стальных и чугунных заготовок после упрочнения магнитно-динамическим накатыванием (МДН), совмещенной обработкой МДН и вращающимся постоянным магнитным полем, совмещенной обработкой МДН и вращающимся переменным магнитным полем. Методы исследования: рентгеноструктурные исследования поверхностного слоя; исследования микроструктуры; рентгеноспектральный микроанализ поверхностного слоя упрочненных заготовок из стали и чугуна. Результаты и обсуждение. Анализ результатов исследований позволил установить, что совмещенная упрочняющая обработка МДН и вращающимся магнитным полем позволяет сформировать в поверхностном слое стальных и чугунных заготовок наноразмерную субзеренную структуру на глубину до 3,0 мкм с размером блоков до 100 нм. При этом имеет место увеличение глубины модифицированного поверхностного слоя, плотности дислокаций, периода кристаллической решетки обрабатываемых ферромагнитных материалов и формирование в упрочненном поверхностном слое образцов остаточных напряжений сжатия. Из представленной в работе физической модели получения в поверхностном слое ферромагнитных деталей наноразмерной субзереной структуры следует, что степень дробления (измельчения) зерен упрочняемого материала определяется количеством полученных силовых импульсов со стороны деформирующих шаров инструмента. Возникающие в процессе многократного дробления зерен и субзерен частицы имеют неправильную асимметричную форму и свой магнитный момент, не совпадающий с направлением действия внешнего магнитного поля. Вследствие этого полученные в процессе дробления зерен и субзерен частицы, стремящиеся сориентироваться по направлению внешнего магнитного поля, поворачиваются в пространстве и дополнительно сглаживают разогретые локальными вихревыми токами границы в зоне их контакта с сопрягаемыми фрагментами частиц, характеризующимися накоплением несовершенств в виде дислокаций. Разработанный метод совмещенного МДН относится к нанотехнологиям поверхностной модификации и рекомендуется к внедрению на предприятиях машиностроения для повышения эксплуатационных свойств деталей технических систем.