Электроизоляционные свойства алюмооксидных детонационных покрытий

Обложка

Цитировать

Полный текст

Аннотация

Введение. Для получения электроизоляционных покрытий из оксидной керамики широко используются различные методы газотермического напыления, такие как газопламенное, плазменное, HVOF, детонационное и др. Важными, но пока до конца не изученными являются вопросы о природе электропроводности газотермических, в том числе. детонационных, покрытий, а также о влиянии состава используемой детонирующей смеси на их электроизоляционные свойства. Экспериментально обнаружено, что электропроводность алюмооксидных покрытий зависит не только от технологического режима их нанесения и структуры, но и от влажности и температуры окружающей атмосферы. Однако физической модели, количественно описывающей механизм электропроводности с учетом этих факторов, пока не предложено, поэтому задача теоретического объяснения имеющихся экспериментальных данных является актуальной. Цель работы заключалась в экспериментальном изучении электроизоляционных свойств алюмооксидных покрытий, полученных детонационным напылением, в определении влияния состава детонирующей смеси на их электропроводность, а также в построении физической модели, позволяющей количественно оценивать удельное объемное сопротивление покрытий. В работе исследованы детонационные покрытия, полученные на детонационной установке CCDS2000 из порошка корунда марки М40 Super с использованием ацетиленокислородных смесей с различным содержанием компонентов.  Методы исследований включали измерения пористости, удельного электрического сопротивления и диэлектрической прочности полученных покрытий. Полученная информация использовалась для построения модели проводимости детонационных покрытий с учетом дефектности структуры. Результаты и их обсуждение. Различия в свойствах покрытий, полученных с применением ацетиленокислородных детонирующих смесей, в широком диапазоне молярных соотношений кислорода к топливу (от 1,0 до 5,0) не обнаружено. Высказана гипотеза о том, что проводимость покрытий обусловлена наличием дефектов – микроканалов, заполненных адсорбированной водой. Удельное сопротивление покрытий составляет (0,3…1,3)·1010 Ом·см, условная диэлектрическая прочность 5…6 кВ для толщины 240…300 мкм. Измеряемая в данной работе диэлектрическая прочность называется условной, поскольку до пробоя в обычном понимании, когда значения пробойного тока превышают сотни миллиампер и даже десятки ампер, тестируемые образцы не доводились. Пробой регистрировался, если ток через щуп превышал установленное предельное значение I = 1 мА, т. е. ток, уже ощущаемый человеком. На основе экспериментальных данных и предложенной гипотезы построена модель, согласно которой в объеме покрытия существуют сквозные дефекты в виде микроканалов, площадь которых составляет 0,5…2,0 % площади покрытия, а поперечный размер – от 24 до 105 нм. Микроканалы заполнены адсорбированной из атмосферы водой и по ним протекает основной ток при приложении напряжения. Удельное сопротивление воды при условном пробое составляет величину порядка 105 Ом·см. Научная значимость результатов заключается в объяснении причины более низкого удельного сопротивления газотермических покрытий по сравнению с беспористой спеченной алюмооксидной керамикой (более 1014 Ом·см). Практическая значимость состоит в возможности использования в детонационном напылении ацетиленокислородных смесей с различным сочетанием компонентов без ущерба качества электроизоляционных покрытий.

Об авторах

В. Ю. Ульяницкий

Email: ulianv@mail.ru
доктор технических наук, доцент, Институт гидродинамики им. М.А. Лаврентьева СО РАН, ulianv@mail.ru

А. А. Штерцер

Email: asterzer@mail.ru
доктор физико-математических наук, доцент, Институт гидродинамики им. М.А. Лаврентьева СО РАН, asterzer@mail.ru

И. С. Батраев

Email: ibatraev@gmail.com
Институт гидродинамики им. М.А. Лаврентьева СО РАН, ibatraev@gmail.com

Список литературы

  1. Fauchais P.L., Heberlein J.V.R., Boulos M.I. Thermal spray fundamentals: from powder to part. – New York: Springer Science+Business Media, 2014. – 1565 p. – ISBN 978-0-387-28319-7.
  2. Deposition of dense ceramic coatings by detonation spraying / V.Yu. Ulianitsky, A.A. Shtertser, I.S. Batraev, I. Smurov // ITSC-2014 Proceedings. – Barcelona, Spain, 2014. – P. 349–352. – (DVS-Berichte; vol. 302). – ISBN 978-3-87155-574-9.
  3. Nieme K., Vuoristo P., Mantyla T. Properties of alumina-based coatings deposited by plasma spray and detonation gun spray process // Journal of Thermal Spray Technology. – 1994. – Vol. 3, iss. 2. – P. 199–203. – doi: 10.1007/BF02646266.
  4. Development of catalytic converters using detonation spraying / V. Ulianitsky, A. Shtertser, V. Sadykov, I. Smurov // Materials and Manufacturing Processes. – 2016. – Vol. 31, iss. 11. – P. 1433–1438. – doi: 10.1080/10426914.2016.1151041.
  5. Edge effect on crack patterns in thermally sprayed ceramic splats / L. Chen, G.-J. Yang, C.-X. Li, C.-J. Li // Journal of Thermal Spray Technology. – 2017. – Vol. 26, iss. 3. – P. 302–314. – doi: 10.1007/s11666-016-0505-6.
  6. Chen L., Yang G.-J. Epitaxial growth and cracking mechanisms of thermally sprayed ceramic splats // Journal of Thermal Spray Technology. – 2018. – Vol. 27, iss. 3. – P. 255–268. – doi: 10.1007/s11666-018-0692-4.
  7. Computer-controlled detonation spraying: from process fundamentals toward advanced applications / V. Ulianitsky, A. Shtertser, S. Zlobin, I. Smurov // Journal of Thermal Spray Technology. – 2011. – Vol. 20, iss. 4. – P. 791–801. – doi: 10.1007/s11666-011-9649-6.
  8. Pawlowski L. The relationship between structure and dielectric properties in plasma-sprayed alumina coatings // Surface and Coatings Technology. – 1988. – Vol. 35, iss. 3–4. – P. 285–298. – doi: 10.1016/0257-8972(88)90042-4.
  9. Effect of temperature and humidity on dielectric properties of thermally sprayed alumina coatings / M. Niittymäki, K. Lahti, T. Suhonen, J. Metsäjoki // IEEE Transactions on Dielectrics and Electrical Insulation. – 2018. – Vol. 25, iss. 3. – P. 908–918. – doi: 10.1109/TDEI.2018.006892.
  10. Role of microstructure in dielectric properties of thermally sprayed ceramic coatings / M. Niittymäki, I. Rytöluoto, K. Lahti, J. Metsäjoki, T. Suhonen // Proceedings of the 1st International Conference on Dielectrics, ICD 2016. – Montpellier, France: IEEE, 2016. – P. 1102–1105. – doi: 10.1109/ICD.2016.7547811.
  11. Comparative study of the electrical properties and characteristics of thermally sprayed alumina and spinel coatings / F.L. Toma, S. Scheitz, L.M. Berger, V. Sauchuk, M. Kusnezoff, S. Thiele // Journal of Thermal Spray Technology. – 2011. – Vol. 20, iss. 1–2. – P. 195–204. – doi: 10.1007/s11666-010-9580-2.
  12. On the dielectric strengths of atmospheric plasma sprayed Al2O3, Y2O3, ZrO2 – 7% Y2O3 and (Ba,Sr)TiO3 coatings / J. Kotlan, R.C. Seshadri, S. Sampath, P. Ctibor, Z. Pala, R. Musalek // Ceramics International. – 2015. – Vol. 41, no. 9. – P. 11169–11176. – doi: 10.1016/j.ceramint.2015.05.066.
  13. Neusel C., Jelitto H., Schneider G.A. Electrical conduction mechanism in bulk ceramic insulators at high voltages until dielectric breakdown // Journal of Applied Physics. – 2015. – Vol. 117. – P. 154902(1)–154902(8). – doi: 10.1063/1.4917208.
  14. Gerson R., Marshall T.C. Dielectric breakdown of porous ceramics // Journal of Applied Physics. – 1959. – Vol. 30. – P. 1650–1653. – doi: 10.1063/1.1735030.
  15. Nikolaev Yu.A., Topchiyan V.E. Analysis of equilibrium flows in detonation waves in gases // Combustion, Explosion, and Shock Waves. – 1977. – Vol. 13, iss. 3. – P. 327–338. – doi: 10.1007/BF00740309.
  16. Aluminum oxide, Al2O3 ceramic properties [Electronic resource] // Accuratus Corporation: website. – URL: https://www.accuratus.com/alumox.html (accessed: 14.11.2018).
  17. Сколунов А.В. Геометрия воды и льда. – М.: Компания Спутник+, 2013. – 312 с. – ISBN 978-5-9973-2685-2.
  18. Балыгин И.Е. Электрическая прочность жидких диэлектриков. – М.; Л.: Энергия, 1964. – 227 с.
  19. Dielectric breakdown strength of thermally sprayed ceramic coatings: effects of different test arrangements / M. Niittymaki, K. Lahti, T. Suhonen, J. Metsajoki // Journal of Thermal Spray Technology. – 2015. – Vol. 24, iss. 3. – P. 542–551. – doi: 10.1007/s11666-014-0211-1.
  20. A novel γ-Al2O3 nano?ltration membrane via introducing hollow microspheres into interlayers for improving water permeability / W. Fu, X. Zhang, Y. Mao, T. Pei, B. Sun, S. Mei, L. Chen // Ceramics International. – 2018. – Vol. 44, iss. 13. – P. 15824–15832. – doi: 10.1016/j.ceramint.2018.05.261.
  21. Microstructure and mechanical properties of plasma sprayed alumina-based coatings / G.Di Girolamo, A. Brentari, C. Blasi, E. Serra // Ceramics International. – 2014. – Vol. 40, iss. 8, part B. – P. 12861–12867. – doi: 10.1016/j.ceramint.2014.04.143.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».