Therapeutic potential of transcranial magnetic stimulation in mental health issues

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Transcranial magnetic stimulation (TMS) is a non-invasive stimulation of brain tissue by creating a high- or low-intensity magnetic field that modulates the excitability of the cerebral cortex. Repetitive (rhythmic) transcranial magnetic stimulation (rTMS) involves the application of repeated TMS pulses to a specific area of the brain. rTMS has been studied as a potential treatment for a number of psychiatric and neurological disorders. The neuromodulatory effect depends on a number of stimulation parameters, such as the target area in the brain, frequency, intensity, duration, and number of sessions, as well as patient factors such as age, disease status, medication use, and individual symptoms.

Generally, rTMS is classified as high-frequency (>1 Hz), which increases cortical excitability, and low-frequency (<1 Hz), which suppresses it [1]. A new advancement in TMS is ExoTMS® technology. This technology utilizes a new therapy protocol at three different frequencies with an increased number of magnetic pulses (6,440), which is 2-3 times more than other similar devices. Furthermore, ExoTMS pulses are trapezoidal in shape and, unlike traditional rectangular pulses, gradually deliver increasing electromagnetic energy to neurons and are non-addictive. All this reduces the therapy course to 6 sessions of 24 minutes each, compared to 30 sessions with similar devices. By stimulating the dorsolateral prefrontal cortex (DLPFC), ExoTMS enhances arousal in this region, thereby facilitating the processing and regulation of emotions [2].

rTMS has a stimulating effect on neuronal plasticity processes, in particular on the mechanisms of long-term potentiation and depression, and the regulation of gene expression associated with the synthesis of brain-derived neurotrophic factor (BDNF) [3, 4]. This article presents an overview of current data on transcranial magnetic stimulation and the capabilities of ExoTMS technology.

About the authors

Elena V. Svechnikova

Russian Biotechnology University (ROSBIOTECH); Polyclinic No. 1 of the Administrative Directorate of the President of the Russian Federation

Email: elene-elene@bk.ru
ORCID iD: 0000-0002-5885-4872

Dr. Sci. (Med.), Professor, Head of the Department of Dermatovenereology and Cosmetology, Professor at the Department of Skin and Venereal Diseases

Russian Federation, Moscow; Moscow

Maria A. Morzhanaeva

BTL Russia

Email: maria_morzhanaeva@mail.ru
ORCID iD: 0000-0001-8657-9559

Cand. Sci. (Med.), Cosmetologist, Expert in Aesthetic Development

Russian Federation, Moscow

Valentina E. Lemytskaya

BTL Russia

Email: elene-elene@bk.ru
ORCID iD: 0000-0001-5039-4691

Neurologist, Dermatovenerologist, Cosmetologist. Head of the Clinical Department

Russian Federation, Moscow

Elena V. Rzhevskaya

Polyclinic No. 1 of the Administrative Directorate of the President of the Russian Federation, Moscow

Author for correspondence.
Email: nolamz@mail.ru
ORCID iD: 0000-0001-7194-8219

Cand. Sci. (Med.), Chief Physician

Russian Federation, Moscow

Viktor V. Gladko

Russian Biotechnology University (ROSBIOTECH)

Email: dr.gladko@mgupp.ru
ORCID iD: 0000-0003-3087-5038

Dr. Sci. (Med.), Professor, Director of the MICE, Head of the Department of Skin and Venereal Diseases with a Course in Cosmetology

Russian Federation, Moscow

Natalya O. Artemyeva

Expert Multidisciplinary Clinic OMNIUS

Email: natalya.artemeva.89@mail.ru
ORCID iD: 0000-0002-5619-6757

Cand. Sci. (Med.), Dietitian, Geneticist

Russian Federation, Moscow

References

  1. Wang X., Mao Z., Ling Z., Yu X. Repetitive transcranial magnetic stimulation for cognitive impairment in Alzheimer’s disease: a meta-analysis of randomized controlled trials. J Neurol. 2020;267(3):791–801. https://dx.doi.org/10.1007/s00415-019-09644-y
  2. Nejati V., Majdi R., Salehinejad M.A., Nitsche M.A. The role of dorsolateral and ventromedial prefrontal cortex in the processing of emotional dimensions. Sci Rep. 2021;11(1):1971. https://dx.doi.org/10.1038/s41598-021-81454-7
  3. He W., Fong P.Y., Leung T.W.H., Huang Y.Z. Protocols of non-invasive brain stimulation for neuroplasticity induction. Neurosci Lett. 2020;719:133437. https://dx.doi.org/10.1016/j.neulet.2018.02.045
  4. Peng Z., Zhou C., Xue S., et al. Mechanism of repetitive transcranial magnetic stimulation for depression. Shanghai Arch Psychiatry. 2018;30(2):84-92. https://dx.doi.org/10.11919/j.issn.1002-0829.217047
  5. Kropotov J.D. Chapter 4.5-transcranial magnetic stimulation. In: Kropotov J.D., editor. Functional neuromarkers for psychiatry. Cambridge, Massachusetts: Academic Press; 2016:281–283. https://dx.doi.org/10.1016/B978-0-12-410513-3.00019-X
  6. Hoogendam J.M., Ramakers G.M.J., Lazzaro V.D. Physiology of repetitive transcranial magnetic stimulation of the human brain. Brain Stimul Basic Transl Clin Res Neuromodulation. 2010;3(2):95–118. https://dx.doi.org/10.1016/j.brs.2009.10.005
  7. Brown J.C., Yuan S., DeVries W.H., et al. NMDA‐receptor agonist reveals LTP‐like properties of 10‐Hz rTMS in the human motor cortex. Brain Stimul Basic Transl Clin Res Neuromodulation. 2021;14(3):619–621. https://dx.doi.org/10.1016/j.brs.2021.03.016
  8. Baur D., Galevska D., Hussain S., et al. Induction of LTD‐like corticospinal plasticity by low‐frequency rTMS depends on pre‐stimulus phase of sensorimotor μ‐rhythm. Brain Stimul Basic Transl Clin Res Neuromodulation. 2020;13(6):1580–1587. https://dx.doi.org/10.1016/j.brs.2020.09.005
  9. Kang J.I., Lee H., Jhung K., et al. Frontostriatal connectivity changes in major depressive disorder after repetitive transcranial magnetic stimulation: a randomized sham‐controlled study. J Clin Psychiatry. 2016;77(9):e1137–e1143. https://dx.doi.org/10.4088/JCP.15m10110
  10. Chang D., Zhang J., Peng W., et al. Smoking cessation With 20 Hz repetitive Transcranial Magnetic Stimulation (rTMS) applied to two brain regions: a pilot study. Front Hum Neurosci. 2018;12:344. https://dx.doi.org/10.3389/fnhum.2018.00344
  11. Taylor R. Galvez V., Loo C. Transcranial magnetic stimulation (TMS) safety: a practical guide for psychiatrists. Australas Psychiatry. 2018;26(2):189–192. https://dx.doi.org/10.1177/1039856217748249
  12. Chan J.H.-L., Lin C.S.-Y., Pierrot-Deseilligny E., Burke D. Excitability changes in human peripheral nerve axons in a paradigm mimicking paired-pulse transcranial magnetic stimulation. J Physiol. 2002;542(Pt 3):951–961. https://dx.doi.org/10.1113/jphysiol.2002.018937
  13. Pell G.S., Roth Y., Zangen A. Modulation of cortical excitability induced by repetitive transcranial magnetic stimulation: influence of timing and geometrical parameters and underlying mechanisms. Prog Neurobiol. 2011;93(1):59-98. https://dx.doi.org/10.1016/j.pneurobio.2010.10.003
  14. Chervyakov A.V., Chernyavsky A.Y., Sinitsyn D.O., Piradov M.A. Possible mechanisms underlying the therapeutic effects of transcranial magnetic stimulation. Front Hum Neurosci. 2015;9:303. https://dx.doi.org/10.3389/fnhum.2015.00303
  15. Xing Y., Zhang Y., Li C., et al. Repetitive transcranial magnetic stimulation of the brain after ischemic stroke: mechanisms from animal models. Cell Mol Neurobiol. 2023;43(4):1487–1497. https://dx.doi.org/10.1007/s10571-022
  16. Красильникова А.П., Егорова А.В., Воронков Д.Н. и др. Клеточные и молекулярные механизмы транскраниальной магнитной стимуляции: Экспериментальные данные в оценке изменений нервной ткани. Анналы клинической и экспериментальной неврологии. 2024;18(4):96–109. Krasilnikova A.P., Egorova A.V., Voronkov D.N., et al. Cellular and molecular mechanisms underlying transcranial magnetic stimulation: experimental data for evaluating changes in nervous tissue. Annals of Clinical and Experimental Neurology. 2024;18(4):96–109. (In Russ.)]. https://doi.org/10.17816/ACEN.1152
  17. Liao J., Chen C., Ahn E.H., et al. Targeting both BDNF/TrkB pathway and delta-secretase for treating Alzheimer’s disease. Neuropharmacology. 2021;197:108737. https://dx.doi.org/10.1016/j.neuropharm.2021.108737
  18. Zangen A., Hyodo K. Transcranial magnetic stimulation induces increases in extracellular levels of dopamine and glutamate in the nucleus accumbens. National Institute on Drug Abuse, NIH, 5500 Nathan Shock Drive, Baltimore, MD 21224, USA; Institute for Human Science and Biomedical Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Namiki 1-2-1, Tsukuba, 305-8564 Japan. https://dx.doi.org/10.1097/01.wnr.0000048021.74602.f2
  19. Badre D., Wagner A.D. Selection, integration, and conflict monitoring: assessing the nature and generality of prefrontal cognitive control mechanisms. Neuron. 2004;41:473–487. doi: 10.1016/s0896-6273(03)00851-1
  20. Hart H., Radua J., Nakao T., et al. Meta-analysis of functional magnetic resonance imaging studies of inhibition and attention in attention-deficit/hyperactivity disorder: exploring task-specific, stimulant medication and age effects. JAMA Psychiatry. 2013;70:185–198. https://dx.doi.org/10.1001/jamapsychiatry.2013.277
  21. Duncan J. The multiple-demand (MD) system of the primate brain: mental programs for intelligent behaviour. Trends Cogn Sci. 2010;14(4):172-179. https://dx.doi.org/10.1016/j.tics.2010.01.004
  22. Chen P.Y., Chen C.L., Hsu Y.C., et al. Fluid intelligence is associated with cortical volume and white matter tract integrity within multiple-demand system across adult lifespan. NeuroImage. 2020;212:116576. https://dx.doi.org/10.1016/j.neuroimage.2020.116576
  23. Bigday V., Samoylov V.O., Sinegubov A.A. Kompleksnye narusheniya obonatel’noi sensory sistemy pri shizofrenii. Institute of Physiology named after I.P. Pavlov, Russian Academy of Sciences; Saint Petersburg, Russia. 2021. https://dx.doi.org/10.31857/S0301179821020028
  24. Koenigs M., Grafman J. The functional neuroanatomy of depression: distinct roles for ventromedial and dorsolateral prefrontal cortex. Behav Brain Res. 2009;201(2):239-243. doi: 10.1016/j.bbr.2009.03.004
  25. Mazo G.E., Kibitov A.O. Title not provided. Journal not provided. 2019;3:10–18. https://dx.doi.org/10.31363/2313-7053-2019-3-10-18
  26. Qin S., Hermans E.J., van Marle H.J.F., et al. Acute psychological stress reduces working memory-related activity in the dorsolateral prefrontal cortex. Biol Psychiatry. 2009;66(1):25–32. https://dx.doi.org/10.1016/j.biopsych.2009.03.006
  27. Abernathy K., Chandler L.J., Woodward J.J. Alcohol and the prefrontal cortex. Int Rev Neurobiol. 2010;91:289–320. https://dx.doi.org/10.1016/S0074-7742(10)91009-X
  28. Gowin J.L., Mackey S., Paulus M.P. Altered risk-related processing in substance users: Imbalance of pain and gain. Drug Alcohol Depend. 2013;132(1-2):13–12. https://dx.doi.org/10.1016/j.drugalcdep.2013.03.019.
  29. Kozel F.A. Clinical repetitive Transcranial Magnetic Stimulation for posttraumatic stress disorder, generalized anxiety disorder, and bipolar disorder. Psychiatr Clin North Am. 2018;41(3):433–446. https://dx.doi.org/10.1016/j.psc.2018.04.007
  30. Peterchev A.V., Luber B., Westin G.G., Lisanby S.H. Pulse width affects scalp sensation of transcranial magnetic stimulation. Brain Stimulat. 2017;10(1):99–105. https://dx.doi.org/10.1016/j.brs.2016.09.007
  31. Dees M., Halaas Y., McCoy J.D. ExoTMS™ technology: a novel breakthrough in transcranial magnetic stimulation for enhancing mental well-being. Journal of Psychiatry and Psychiatric Disorders. 2025;9:245–254. https://dx.doi.org/10.31363/2313-7053-2019-3-10-18
  32. Kessler R.M., Hutson P.H., Herman B.K., Potenza M.N. The neurobiological basis of binge‐eating disorder. Neurosci Biobehav Rev. 2016;63:223–238. https://dx.doi.org/10.1016/j.neubiorev.2016.01.013
  33. Pánek D., Donchev T.S. ExoTMS transcranial magnetic stimulation for the reduction of binge eating symptoms. Psychiatry Clin Neurosci Rep. 2025;4:e70200. https://dx.doi.org/10.1002/pcn5.70200
  34. Rossi S., Hallett M., Rossini P.M., et al. Safety, ethical considerations, and research. Clin Neurophysiol. 2009;120(12):2008–2039. https://dx.doi.org/10.1016/j.clinph.2009.08.016
  35. Damar U., Lee Kaye H., Smith N.A., et al. Safety and tolerability of repetitive Transcranial Magnetic Stimulation during pregnancy: a case report and literature review. J Clin Neurophysiol. 2020;37(2):164–169. https://dx.doi.org/10.1097/WNP.0000000000000552
  36. McLean A.L. Publication trends in transcranial magnetic stimulation: a 30-year panorama. Brain Stimul. 2019;12(1): https://dx.doi.org/10.1016/j.brs.2019.01.002

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).