The role of perfusion computed tomography in the diagnosis of kidney cancer

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Background: Imaging methods such as ultrasound, computed tomography (CT), positron emission tomography, and magnetic resonance imaging (MRI) play a leading role in the detection of kidney tumors. Renal CT is the standard for diagnosing renal cell carcinoma (RCC). Digital data on perfusion CT (PCT) parameters for the tumor zone and healthy tissue allow to determine normalized «i» values for each RCC parameter (BF – blood flow, BV – blood volume, MTT – mean transit time, TTP – time to peak).

Despite the long history of studying RCC, diagnostic methods, and imaging, CT and/or MRI do not have sufficient specificity. Based on the statistical analysis, PCT has great potential in diagnosing renal masses and may open new perspectives for optimizing surgical tactics due to its high information content in the differential diagnosis of benign and malignant renal masses.

Objective: Determination of the diagnostic value of PCT in optimizing surgical treatment tactics and assessing the functional capacity of the renal parenchyma in RCC.

Materials and methods: The study analyzed data from 119 patients (58.3 ± 12.6 years) with a confirmed diagnosis of RCC who underwent PCT before treatment and at 1 and 3 months after the start of therapy. Four perfusion parameters were evaluated for the diagnosis of RCC: BF, BV, MTT, and TTP.

Results: According to the analysis, 1 month after of treatment, patients (n=45) responding to therapy showed a decrease in BF and BV in tumor tissue (p<0.01). In the group of non-responders (n=34), changes in perfusion parameters were non-significant (p>0.05). In patients responding to therapy after 3 months, perfusion parameters continued to decline. The mean BF was 85.2±15.3 ml/100 g/min, and BV was 10.7±2.1 ml/100 g.

Conclusion: PCT has great potential and opens new perspectives in the diagnosis, assessment, and surgical management of RCC.

About the authors

A. V. Khasigov

North Ossetian State Medical Academy

Email: alan_hasigov@mail.ru
ORCID iD: 0000-0003-1103-4532
Russian Federation, Vladikavkaz

V. T. Tebiyev

North Ossetian State Medical Academy

Author for correspondence.
Email: tebiyevv@mail.ru
ORCID iD: 0009-0001-2173-8384
Russian Federation, Vladikavkaz

A. V. Timoshenkova

North Ossetian State Medical Academy

Email: colorsit21@mail.ru
Russian Federation, Vladikavkaz

References

  1. Gigli F., Zattoni F., Zamboni G., et al. Correlation between pathologic features and perfusion CT of renal cancer: a feasibility study. Urologia. 2010;77:223–31.
  2. Mazzei F.G., Mazzei M.A., Cioffi Squitieri N., et al. CT perfusion in the characterisation of renal lesions: an added value to multiphasic CT. Biomed Res Int. 2014;2014:135013.
  3. Chandarana H., Rosenkrantz A.B., Mussi T.C., et al. Histogram analysis of whole-lesion enhancement in differentiating clear cell from papillary subtype of renal cell cancer. Radiology. 2012;265:790–8. https://doi.org/10.1148/radiol.12111281
  4. Chen Y., Zhang J., Dai J., et al. Angiogenesis of renal cell carcinoma: perfusion CT findings. Abdom Imaging. 2010;35:622–8. https://doi.org/10.1007/s00261-009-9565-0
  5. Zhang J., Wang R., Lou H., et al. Functional computed tomographic quantification of angiogenesis in rabbit VX2 soft-tissue tumor before and after interventional therapy. J Comput Assist Tomogr. 2008;32:697–705. https://doi.org/10.1097/RCT.0b013e31815b7dcf
  6. Reiner C.S., Roessle M., Thiesler T., et al. Computed tomography perfusion imaging of renal cell carcinoma: systematic comparison with histopathological angiogenic and prognostic markers. Invest Radiol. 2013;48:183–91. https://doi.org/10.1097/RLI.0b013e31827c63a3
  7. Bianchi M., Sun M., Jeldres C., et al. Distribution of metastatic sites in renal cell carcinoma: a population-based analysis. Ann Oncol. 2012;23:973–80. doi: 10.1093/annonc/mdr362
  8. Bektas C.T., et al. Clear cell renal cell carcinoma: machine learning-based quantitative computed tomography texture analysis for prediction of fuhrman nuclear grade. Eur Radiol. 2019;29(3):1153–63. https://doi.org/10.1007/s00330-018-5698-2
  9. Erdim C., et al. Prediction of benign and malignant solid renal masses: machine learning-based CT texture analysis. Acad Radiol. 2020;27(10):1422–9. https://doi.org/10.1016/j.acra.2019.12.015
  10. Bellin M.F., Roy C., Kinkel K., Dupas B. Magnetic resonance imaging of renal masses: Diagnostic approach. Eur Radiol. 2005;15(11):2231–41.
  11. Sun H. Classification of small renal masses based on CT images and machine learning algorithms. MS Thesis, Univ. of Turku. 2018.
  12. Kocak B., et al. Textural differences between renal cell carcinoma subtypes: machine learning-based quantitative computed tomography texture analysis with independent external validation. Eur J Radiol. 2018;107:149–57. https://doi.org/10.1016/j.ejrad.2018.08.014
  13. Hodgdon T., et al. Can quantitative CT texture analysis be used to differentiate fat-poor renal angiomyolipoma from renal cell carcinoma on unenhanced CT images? Radiology. 2015;276(3):787–96. https://doi.org/10.1148/radiol.2015142215
  14. Jewett M.A., Mattar K., Basiuk J., Active surveillance of small renal masses: progression patterns of early stage kidney cancer. Eur Urol. 2011;60(1):39. https://doi.org/10.1016/j.eururo.2011.03.030
  15. Ломоносова Е.В., Гольбиц А.Б., Рубцова Н.А. и др. Перфузионная компьютерная томография в диагностике заболеваний почек (обзор литературы). Медицинская визуализация. 2023;27(2):85–98. [Lomonosova E.V., Golbitz A.B., Rubtsova N.A., et al. Perfusion computed tomography in the diagnosis of kidney diseases (literature review). Meditsinskaya vizualizatsiya. 2023;27(2):85–98. (In Russ.)].
  16. Рубцова Н.А., Гольбиц А.Б., Крянева Е.В. и др. Роль КТ-перфузии в диагностике солидных опухолей почек. Лучевая диагностика и терапия. 2021;12(2):70–8. [Rubtsova N.A., Golbitz A.B., Kryaneva E.V., et al. The role of CT perfusion in the diagnosis of solid kidney tumors. Luchevaya diagnostika i terapiya. 2021;12(2):70–8. (In Russ.)].
  17. Wang Y., et al. Baseline perfusion CT parameters as potential biomarkers in predicting long-term prognosis of localized clear cell renal cell carcinoma. Abdom Radiol. 2019;44:3370–6. https://doi.org/10.1007/s00261-019-02087-z
  18. Chen C., et al. Study of 320-Slice dynamic volume CT perfusion in different pathologic types of kidney tumor: preliminary results. PLoS One. 2014;9(1):e85522. https://doi.org/10.1371/journal.pone.0085522
  19. Das C.J., Thingujam U., Panda A., et al. Perfusion computed tomography in renal cell carcinoma. World J Radiol. 2015;7(7):170–9. https://doi.org/Doi: 10.4329/wjr.v7.i7.170
  20. Garcia-Figueiras R., et al. CT Perfusion in Oncologic Imaging: A Useful Tool. AJR. 2000. 2013. https://doi.org/10.2214/AJR.11.8476

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).