Новые термочувствительные смарт-биоматериалы на основе коллагена, модифицированного винилглицидиловым эфиром этиленгликоля, для 4D-биопечати

Обложка

Цитировать

Полный текст

Аннотация

Новизна и цель работы заключались в том, что реакционноспособный в условиях ультрафиолетового излучения коллаген впервые получен функционализацией боковых аминогрупп лизиновых фрагментов ненасыщенным винилглицидиловым эфиром этиленгликоля («винилоксом»), содержащим, аналогично глицидилметакрилату, эпоксидную группу. Особенностью данного подхода является то, что наличие этой группы с умеренной реакционной способностью обеспечивает избирательное протекание реакции прививки по боковым аминогруппам коллагена в нейтральной или слабощелочной среде и исключает характерное для аналога – глицидилметакрилата – образование побочных продуктов реакции Михаэля и гидролиза. По данным фотометрии установлено, что модификация в слабоосновном водном растворе при комнатной температуре и значительном избытке «винилокса» позволяет достичь степени прививки 23,4%. Впервые при добавлении полиэтиленгликоль диакрилата, поли(N-изопропилакриламида) к слабокислому водному раствору коллагена получены пленкообразующие композиты, способные к фотоотверждению. Наличие винилоксидных групп позволило обеспечить удовлетворительные механические характеристики пленок в результате инициируемого ультрафиолетовым излучением сшивания коллагена, а присутствие поли(N-изопропилакриламида) – гидрофильно-гидрофобную смарт-чувствительность. Пленки обладают развитой фибриллярной структурой, а размеры пустот позволяют обеспечить свободное перемещение питательных и прочих соединений. Согласно данным МТТ-теста, пленки не выделяют цитотоксических компонентов и сохраняют метаболическую активность стволовых клеток, обеспечивая достаточную их плотность на своей поверхности. Все вышеперечисленное определяет перспективность использования пленок как в качестве искусственного внеклеточного матрикса – скаффолда, так и в виде термочувствительных смарт-подложек для выращивания стволовых клеток на их поверхностях для последующей биопечати с лазерным переносом.

Об авторах

И. А. Фарион

Байкальский институт природопользования СО РАН

Email: fariv@mail.ru

А. С. Буинов

Байкальский институт природопользования СО РАН

Email: buinov.aleksandr.96@mail.ru

А. Н. Никишина

Байкальский институт природопользования СО РАН

Email: alenaniknikishina@yandex.ru

В. Ф. Бурдуковский

Байкальский институт природопользования СО РАН

Email: burdvit@mail.ru

Список литературы

  1. Blaeser A., Heilshorn S.C., Campos D.F.D. Smartas de novo building blocks to bioengineer living tissues. Gels. 2019;5(2):29. doi: 10.3390/gels5020029.
  2. Ohya S., Matsuda T. Poly(N-isopropylacrylamide) (PNIPAM)-grafted gelatin as thermoresponsive three-dimensional artificial extracellular matrix: Molecular and formulation parameters vs. cell proliferation potential. Journal of Biomaterials Science. Polymer edition. 2005;16(7):809-827. doi: 10.1163/1568562054255736.
  3. Parenteau-Bareil R., Gauvin R., Berthod F. Collagenbased biomaterials for tissue engineering applications. Materials. 2010;3(3):1863-1887. doi: 10.3390/ma3031863.
  4. Kanagaraj J., Panda R.C., Jayakumar G.C. Interaction of glyoxal with collagenous matrix and its behavioral aspects for non-toxic and sustainable tanning system. International Journal of Environmental Science and Technology. 2020;17:879-890. doi: 10.1007/s13762-019-02327-1.
  5. He L., Lan W., Zhao Y., Chen S., Liu S., Cen L., et al. Characterization of biocompatible pig skin collagen and application of collagen-based films for enzyme immobilization. RSC Advances. 2020;10(12):7170– 7180. doi: 10.1039/C9RA10794K.
  6. Liu B., Wang J., Ji L., Bai T., Zhang Y., Liu D. Structure validation of oxidized poly(2-hydroxyethyl acrylate) with multiple aldehyde groups and its application for collagen modification. Royal Society Open Science. 2021;8(2):201892. doi: 10.1098/rsos.201892.
  7. Adamiak K., Sionkowska A. Current methods of collagen cross-linking: review. International Journal of Biological Macromolecules. 2020;161:550-560. doi: 10.1016/j.ijbiomac.2020.06.075.
  8. Nashchekina Yu.A., Sirotkina M.Yu., Darvish D.M., Barsuk I.A., Moskalyuk O.A., Mikhailova N.A. The effect of carbodiimide on the structural, mechanical and biological properties of collagen films. Cell and Tissue Biology. 2021;15:586-593. doi: 10.1134/S1990519X21060079.
  9. Riacci L., Sorriento A., Ricotti L. Genipin-based crosslinking of jellyfish collagen 3D hydrogels. Gels. 2021;7(4):238. doi: 10.3390/gels7040238.
  10. Murueva A.V., Shershneva A.M., Nemtsev I.V. Shishatskaya E.I., Volova T.G. Collagen conjugation to carboxyl-modified poly(3-hydroxybutyrate) microparticles: preparation, characterization and evaluation in vitro. Journal of Polymer Research. 2022;29:324. doi: 10.1007/s10965-022-03181-5.
  11. Ng W.L., Chua C.K., Shen Y.-F. Print me an organ! Why we are not there yet. Progress in Polymer Science. 2019;97:101145. doi: 10.1016/j.progpolymsci.2019.101145.
  12. Ravichandran R., Islam M.M., Alarcon E.I., Samanta A., Wang S., Lundström P., et al. Functionalised type-I collagen as a hydrogel building block for bioorthogonal tissue engineering applications. Journal of Materials Chemistry. B. 2016;4(2):318-326. doi: 10.1039/c5tb02035b.
  13. Behan K., Dufour A., Garcia O., Kelly D. Methacrylated cartilage ECM-based hydrogels as injectables and bioinks for cartilage tissue engineering. Biomolecules. 2022;12(2):216. doi: 10.3390/biom12020216.
  14. Tronci G., Russell S.J., Wood D.J. Photo-active collagen systems with controlled triple helix architecture. Journal of Materials Chemistry. B. 2013;1(30):37053715. doi: 10.1039/c3tb20720j.
  15. Buttafoco L., Kolkman N.G., Engbers- Buijtenhuijs P., Poot A.A., Dijkstra P.J., Vermes I., Feijen J. Electrospinning of collagen and elastin for tissue engineering applications. Biomaterials. 2006;27(5):724734. doi: 10.1016/j.biomaterials.2005.06.024.
  16. Huang G.P., Shanmugasundaram S., Masih P., Pandya D., Amara S., Collins G., Arinzeh T.L. An investigation of common crosslinking agents on the stability of electrospun collagen scaffolds. Journal of Biomedical Materials Research. Part A. 2015;103(2):762-771. doi: 10.1002/jbm.a.35222.
  17. Tu R., Shen S.-H., Lin D., Hata C., Thyagarajan K., Noishiki Y., Quijano R.C. Fixation of bioprosthetic tissues with monofunctional and multifunctional polyepoxy compounds. Journal of Biomedical Materials Research. 1994;28(6):677-684. doi: 10.1002/JBM.820280604.
  18. Bubnis W.A., Ofner III C.M. The determination of -amino groups in soluble and poorly soluble proteinaceous materials by a spectrophotometric method using trinitrobenzenesulfonic acid. Analytical Biochemistry. 1992;207(1):129-133. doi: 10.1016/0003-2697(92)90513-7.
  19. Parfenov V.A., Khesuani Y.D., Petrov S.V., Karalkin P.A., Koudan E.V., Nezhurina E.K., et al. Magnetic levitational bioassembly of 3D tissue construct in space. Science Advances. 2020;6(29):eaba4174. doi: 10.1126/sciadv.aba4174.
  20. Grinberg V.Y., Burova T.V., Grinberg N.V., Buyanovskaya A.G., Khokhlov A.R., Kozhunova E.Yu., et al. Functionalized thermoresponsive microgels based on N-isopropylacrylamide: energetics and mechanism of phase transitions. European Polymer Journal. 2020;133:109722. doi: 10.1016/j.eurpolymj.2020.109722.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).