On the criteria of hydrogen self-ignition during its release from a high-pressure vessel

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The paper presents results of the numerical modeling of high-pressure hydrogen release into air followed by self-ignition. Two problem statements are studied: release through a slit from a tube or a vessel into the space with an obstacle and release through two separated slits. The modeling is performed in two-dimensional approach in Cartesian coordinates. In the framework of the first statement, the initial pressure of hydrogen and the distance to the obstacle are varied, the half-width of the slit is set equal to 1 mm. In the framework of the second statement, the size of slits and the distance between them are varied while the initial pressure of hydrogen is 350 atm. It is shown that the mentioned parameters of the problem determine regimes of hydrogen flow: with and without ignition. For the first statement, two regimes of flow with ignition are observed: before the jet reaches the obstacle and as a result of the reflection of the flow from it. The obtained results could be interesting for the elaboration of hydrogen safety systems.

Авторлар туралы

Anna Smygalina

Joint Institute for High Temperatures of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: smygalina-anna@yandex.ru

Candidate of Science in physics and mathematics, research scientist

Ресей, Moscow

Alexey Kiverin

Joint Institute for High Temperatures of the Russian Academy of Sciences

Email: alexeykiverin@gmail.com

Doctor of Science in physics and mathematics, professor, head of department

Ресей, Moscow

Әдебиет тізімі

  1. Wolanski P., Wojcicki S. Investigation into the mechanism of the diffusion ignition of a combustible gas flowing into an oxidizing atmosphere // P. Combust. Inst., 1973. Vol. 14. P. 1217–1223.
  2. Lee H. J., Park J. H., Kim S. D., Kim S., Jeung I. S. Numerical study on the spontaneous-ignition features of high-pressure hydrogen released through a tube with burst conditions // P. Combust. Inst., 2015. Vol. 35. No. 2. P. 2173–2180. doi: 10.1016/j.proci.2014.07.055.
  3. Xu X., Jiang J., Jiang Y., Wang Z., Wang Q., Yan W., Pan X. Spontaneous ignition of high-pressure hydrogen and boundary layer characteristics in tubes // Int. J. Hydrogen Energ., 2020. Vol. 45. No. 39. P. 20515–20524. doi: 10.1016/j.ijhydene.2020.02.060.
  4. Gong L., Duan Q., Liu J., Li M., Jin K., Sun J. Experimental investigation on effects of CO additions on spontaneous ignition of high-pressure hydrogen during its sudden release into a tube // Int. J. Hydrogen Energ., 2019. Vol. 44. No. 13. P. 7041–7048. doi: 10.1016/ j.ijhydene.2019.01.197.
  5. Golovastov S. V., Bocharnikov V. M., Samoilova A. A. Experimental investigation of influence of methane additions on spontaneous self-ignition of pulsed jet of hydrogen // Int. J. Hydrogen Energ., 2016. Vol. 41. No. 30. P. 13322–13328. doi: 10.1016/j.ijhydene.2016.06.148.
  6. Wen J. X., Xu B. P., Tam V. H. Y. Numerical study on spontaneous ignition of pressurized hydrogen release through a length of tube // Combust. Flame, 2009. Vol. 156. No. 11. P. 2173–2189. doi: 10.1016/j.combustflame.2009.06.012.
  7. Wang Z., Pan X., Jiang Y., Wang Q., Yan W., Xiao J., Jordan T., Jiang J. Experiment study on the pressure and flame characteristics induced by high-pressure hydrogen spontaneous ignition // Int. J. Hydrogen Energ., 2020. Vol. 45. No. 35. P. 18042–18056. doi: 10.1016/ j.ijhydene.2020.04.051.
  8. Golub V. V., Baklanov D. I., Bazhenova T. V., Bragin M. V., Golovastov S. V., Ivanov M. F., Volodin V. V. Shock-induced ignition of hydrogen gas during accidental or technical opening of high-pressure tanks // J. Loss Prevent. Proc., 2007. Vol. 20. No. 4–6. P. 439–446. doi: 10.1016/j.jlp.2007.03.014.
  9. Голуб В. В., Баженова Т. В., Ласкин И. Н., Сёмин Н. В. Диффузионное самовоспламенение водорода, возникающее при истечении его из блока сопел // Письма в ЖТФ, 2009. Т. 35. № 5. С. 8–13.
  10. Белоцерковский О. М., Давыдов Ю. М. Метод крупных частиц в газовой динамике. — М.: Наука, 1982. 392 с.
  11. Conaire M., Curran H. J., Simmie J. M., Pitz W. J., Westbrook C. K. A comprehensive modeling study of hydrogen oxidation // Int. J. Chem. Kinet., 2004. Vol. 36. No. 11. P. 603–622. doi: 10.1002/kin.20036.
  12. Варнатц Ю., Маас У., Диббл Р. Горение. Физические и химические аспекты, моделирование, эксперименты, образование загрязняющих веществ / Пер. с англ. — М.: Физматлит, 2006. 352 с. ( Warnatz J., Maas U., Dibble R. W. Combustion. Physical and chemical fundamentals, modeling and simulations, experiments, pollutant formation. — New York, NY, USA: Springer, 2001. 378 p.)

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).