The effect of a constant magnetic field on the metabolism and viability of magnetic biosorbents based on yeast cells

Cover Page

Cite item

Full Text

Abstract

The damaging effect of magnetic labeling with magnetite nanoparticles and a permanent magnetic field on the viability, metabolism and magnetic properties of magnetically labeled yeast cells, which can be used as magnetically controlled biosorbents with passive and active biosorption mechanisms, has been studied. The magnetic properties of magnetically labeled cells were evaluated using the Faraday scale method. It has been shown that the magnetic susceptibility of magnetically labeled cells increases with an increase in the concentration of iron per 1 cell (CFe) and does not change for several days for cells cultured in and without permanent magnetic field. The damaging effect on the viability of the studied yeast cells was assessed by the difference in the relative proportion of living cells in the population at the beginning and end of their cultivation. The number of living cells was estimated by methylene blue staining and counting of stained cells in the Goryaev chamber. It is shown that the damaging effect of magnetic labeling in the studied CFe range does not depend on CFe when cultivated without permanent magnetic field and increases with increasing CFe when cultivated in permanent magnetic field. The metabolism of magnetically labeled cells was assessed by the release of protons from yeast cells during their glucose processing (acidification test). It has been shown that magnetic labeling reduces the intensity of proton release from the cell by no more than 30%. Thus, in this work it is shown that using magnetic labeling with magnetite nanoparticles, it is possible to obtain viable yeast cells with paramagnetic susceptibility. Such magnetically labeled cells can be used as magnetically controlled biosorbents that can carry out passive and active biosorption of toxicants and at the same time effectively separate using magnetic separators from the cleaned medium.

About the authors

Svetlana Vladimirovna Bespalova

Donetsk State University

Email: bespalova@donnu.ru

doctor of physical and mathematical sciences, professor, rector

Russian Federation

Yuri Anatolevich Legenkiy

Donetsk State University

Email: yu-legen@mail.ru

senior researcher of Research Laboratory of Magnetobiology of Physiology and Biophysics Department

Russian Federation

Andrey Stepanovich Yaitsky

Samara State University of Social Sciences and Education

Author for correspondence.
Email: yaitsky@sgspu.ru

senior lecturer of Biology, Ecology and Methods of Teaching Department

Russian Federation

References

  1. Balintova M., Estokova A. Materials for heavy metals removal from waters // Materials. 2024. Vol. 17, iss. 9. doi: 10.3390/ma17091935.
  2. Zinicovscaia I., Yushin N., Grozdov D., Rodlovskaya E., Khiem L.H. Yeast – as bioremediator of silver-containing synthetic effluents // Bioengineering. 2023. Vol. 10, iss. 4. doi: 10.3390/bioengineering10040398.
  3. Sieber A., Jelic L.R., Kremser K., Guebitz G.M. Spent brewer’s yeast as a selective biosorbent for metal recovery from polymetallic waste streams // Frontiers in Bioengineering and Biotechnology. 2024. Vol. 12. doi: 10.3389/fbioe. 2024.1345112.
  4. Veglio F., Beolchini F. Removal of metals by biosorption: a review // Hydrometallurgy. 1997. Vol. 44, iss. 3. P. 301–316.
  5. Diep P., Mahadevan R., Yakunin A.F. Heavy metal removal by bioaccumulation using genetically engineered microorganisms // Frontiers in Bioengineering and Biotechnology. 2018. Vol. 6. doi: 10.3389/fbioe.2018.00157.
  6. Лыков И.Н., Гаранин Р.А., Петрухина Д.И. Использование биомассы микроорганизмов для извлечения тяжелых металлов из сточных вод // Экология урбанизированных территорий. 2018. № 3. С. 60–63. DOI: 10.24411/ 1816-1863-2018-13060.
  7. Faraji M., Shirani M., Rashidi-Nodeh H. The recent advances in magnetic sorbents and their applications // Trends in Analytical Chemistry. 2021. Vol. 141. doi: 10.1016/j.trac. 2021.116302.
  8. Солопов М.В., Легенький Ю.А., Беспалова С.В., Холявка М.Г. Биосорбция ионов тяжелых металлов дрожжевыми клетками, модифицированными наночастицами магнетита // Вестник Воронежского государственного университета. Серия: Химия. Биология. Фармация. 2019. № 1. С. 96–102.
  9. Diaz-Ravina M., Baath E. Development of metal tolerance in soil bacterial communities exposed to experimentally increased metal levels // Applied and Environmental Microbiology. 1996. Vol. 62, № 8. P. 2970–2977. DOI: 10. 1128/aem.62.8.2970-2977.1996.
  10. Гаранин Р.А., Лыков И.Н. Исследование возможности использования дрожжей (Saccharomyces cerevisiae) в качестве биосорбента тяжелых металлов из промышленных сточных вод // Вестник Московского государственного технического университета им. Н.Э. Баумана. Серия Естественные науки. 2008. № 1 (28). С. 110–119.
  11. Zablotskii V., Polyakova T., Dejneka A. Cells in the non-uniform magnetic world: how cells respond to high-gradient magnetic fields // BioEssays. 2018. Vol. 40, iss. 8. doi: 10.1002/bies.201800017.
  12. Bae J.-E., Huh M.-I., Ryu B.-K., Do J.-Y., Jin S.-U., Moon M.-J., Jung J.-C., Chang Y., Kim E., Chi S.-G., Lee G.-H., Chae K.-S. The effect of static magnetic fields on the aggregation and cytotoxicity of magnetic nanoparticles // Biomaterials. 2011. Vol. 32, iss. 35. P. 9401–9414. DOI: 10.1016/ j.biomaterials.2011.08.075.
  13. Dobosz B., Gunia E., Kotarska K., Schroeder G., Kurczewska J. The effect of a magnetic field on the transport of functionalized magnetite nanoparticles into yeast cells // Applied Sciences. 2024. Vol. 14, iss. 4. doi: 10.3390/app 14041343.
  14. Турчин В.В., Лёгенький Ю.А., Солопов М.В., Попандопуло А.Г., Беспалова С.В., Фисталь Э.Я. Магнитофоретические свойства фетальных фибробластов человека, маркированных суперпарамагнитными наночастицами оксида железа, стабилизированными цитратом // Гены и клетки. 2017. Т. 12, № 1. С. 47–53.
  15. Беспалова С.В., Кладько Д.В., Легенький Ю.А., Павлов В.Н., Глазунова В.А. Влияние низкочастотного переменного магнитного поля на жизнеспособность магнитомаркированных клеток Saccharomyces cerevisiae // Актуальные вопросы биологической физики и химии. 2019. Т. 4, № 3. С. 335–339.
  16. Sigler K. Acidification power (AP) test and similar methods for assessment and prediction of fermentation activity of industrial microorganisms // Kvasny prum. 2013. Vol. 59, iss. 7–8. P. 204–208. doi: 10.18832/kp2013021.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1 – Dependences of magnetic susceptibility of magnetically labeled yeast cell populations on cultivation time. Sample name code: A – CFe = 6.5 pg per cell, B – CFe = 5 pg per cell, C – CFe = 3 pg per cell, D – CFe = 1.5 pg per cell

Download (128KB)
3. Figure 2 – Effect of magnetic labeling on yeast cell metabolism. A – dependence of the normalized ∆pH indicator on the amount of Fe per cell during magnetic labeling; B – normalized curves of induced acidification of the intercellular environment for native and magnetically labeled suspensions obtained at different CFe, indicated in the legend

Download (154KB)
4. Figure 3 – Change in cell viability ∆L, labeled at different iron concentrations per cell CFe and different cultivation conditions (No MP – no magnetic field, MP – in a magnetic field), on the 5th day of cultivation

Download (96KB)

Copyright (c) 2024 Bespalova S.V., Legenkiy Y.A., Yaitsky A.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).