STRUCTURE AND DYNAMICS OF CENOPOPULATIONS OF SHRUB ALDER IN FOREST - MOUNTAIN TUNDRA ECOTONE IN THE WESTERN PART OF THE PUTORANA PLATEAU

Capa

Citar

Texto integral

Resumo

Monitoring the distribution of tree and shrub vegetation at the upper forest limit in mountainous regions is one of the simplest and most effective methods for obtaining evidence of the effects of climate change on vegetation. One of the largest and most widespread shrub species on the Putorana plateau is the shrub alder ( Duschekia fruticosa (Rupr.) Pouzar). The study presents an analysis of the age and morphological structure of shrub alder thickets, which grow at different altitudes (200-600 m above sea level) within the forest - tundra ecotone in forest stands of different density on slopes with different exposures of the Putorana plateau. It has been established that the intensive expansion of shrub alder into mountain tundras, sparse and open forests on the slopes of all exposures of the Sukhie Gory massif occurred in the 20th century, mainly in its second half. The influence of Gmelin larch ( Larix gmelinii (Rupr.) Kuzen) stands on the distribution and morphological structure of shrub alder cenopopulations was revealed. The colonization and spread of shrub alder occurs in conjunction with larch stands. We established relationships between snow depth and the sum of projections of shrub crowns ( R 2 = 0.582). Shrub alder cannot survive in the absence of snow cover. There are significant differences in the distribution of shrub alder depending on the slope exposure. The distribution of shrub alder is higher on the slopes of southern and eastern exposures. The largest number of shrubs grow mainly in the lower part of the ecotone, where snow masses accumulate in greater quantities. The most likely explanation for the increase in density and advance to the mountains of alder shrub may be a general change in climatic conditions in the study area.

Sobre autores

S. Vyukhin

Institute of Plant and Animal Ecology, Russian Academy of Sciences, Ural Branch

Email: sergey.vyuhin@mail.ru
Yekaterinburg, Russian Federation

A. Grigoriev

Institute of Plant and Animal Ecology, Russian Academy of Sciences, Ural Branch

Email: grigoriev.a.a@ipae.uran.ru
Yekaterinburg, Russian Federation

D. Balakin

Institute of Plant and Animal Ecology, Russian Academy of Sciences, Ural Branch

Email: dmitrijbalakin047@gmail.com
Yekaterinburg, Russian Federation

A. Timofeev

Institute of Plant and Animal Ecology, Russian Academy of Sciences, Ural Branch

Email: artyom-timofeev-98@mail.ru
Yekaterinburg, Russian Federation

P. Moiseev

Institute of Plant and Animal Ecology, Russian Academy of Sciences, Ural Branch

Email: moiseev@ipae.uran.ru
Yekaterinburg, Russian Federation

Bibliografia

  1. Ваганов Е. А., Круглов В. Б., Васильев В. Г. Дендрохронология: учеб. пособ. Красноярск: Сиб. фед. ун-т, 2008. 120 с
  2. Горчаковский П. Л., Шиятов С. Г. Фитоиндикация условий среды и природных процессов в высокогорьях. М.: Наука, 1985. 208 с
  3. Куваев В. Б. Высотное распределение растений в горах Путорана. Л.: Наука. Ленингр. отд-ние, 1980. 264 с
  4. Лащинский Н. Н. Редкие кустарниковые сообщества лесного пояса заповедника «Кузнецкий Алатау» // Вестн. Том. гос. ун-та. Биол. 2015. № 1 (29). С. 56-67
  5. Норин Б. Н., Белоусова Ж. М., Березовский В. А. Горные фитоценотические системы Субарктики. Л.: Наука, 1986. 292 с
  6. Пономарева Т. В. Содержание и распределение серы в мерзлотно-таежных почвах плато Путорана // Хвойные бореал. зоны. 2008. Т. 25. № 3-4. С. 290-294
  7. Шиятов С. Г., Ваганов Е. А., Кирдянов А. В., Круглов В. Б., Мазепа В. С., Наурзбаев М. М., Хантемиров Р. М. Методы дендрохронологии. Ч. I: Основы дендрохронологии. Сбор и получение древесно-кольцевой информации: Учеб.-метод. пособие. Красноярск: КГУ, 2000. 80 с
  8. Boulanger-Lapointe N., Lévesque E., Baittinger C., Schmid N. M. Local variability in growth and reproduction of Salix arctica in the High Arctic // Polar Res. 2016. V. 35. Article number: 24126. 11 p
  9. Chapin F. S., Sturm M., Serreze M. C., McFadden J. P., Key J. R., Lloyd A. H., McGuire A. D., Rupp T. S., Lynch A. H., Schimel J. P., Beringe J., Chapman W. L., Epstein H. E., Euskirchen E. S., Hinzman L. D., Jia G., Ping C.-L., Tape K. D., Thompson C. D. C., Walker D. A., Welker J. M. Role of land-surface changes in Arctic summer warming // Science. 2005. V. 310. Iss. 5748. P. 657-660
  10. Forbes B. C., Fauria M. M., Zetterberg P.Russian Arctic warming and “greening” are closely tracked by tundra shrub willows // Glob. Change Biol. 2010. V. 16. Iss. 5. P. 1542-1554
  11. Grigoriev A. A., Shalaumova Y. V., Vyukhin S. O., Balakin D. S., Kukarskikh V. V., Vyukhina A. A., Camarero J. J., Moiseev P. A. Upward treeline shifts in two regions of Subarctic Russia are governed by summer thermal and winter snow conditions // Forests. 2022. V. 13. Iss. 2. Article number: 174. 20 p
  12. Hagedorn F., Shiyatov S. G., Mazepa V. S., Dev N. M., Grigoriev A. A., Bartysh A. A., Fomin V. V., Kapralov D. S., Terent’ev M., Bugman H., Rigling A., Moiseev P. A. Treeline advances along the Urals mountain range - driven by improved winter conditions? // Glob. Chang. Biol. 2014. V. 20. Iss. 11. P. 3530-3543
  13. Harsch M. A., Hulme P. E., McGlone M. S., Dunca R. P. Are treelines advancing? A global meta-analysis of treeline response to climate warming // Ecol. Lett. 2009. V. 12. Iss. 10. P. 1040-1049
  14. Kammer A., Hagedorn F., Shevchenko I., Leifeld J., Guggenberger G., Goryacheva T., Rigling A., Moiseev P. A. Treeline shifts in the Ural mountains affect soil organic matter dynamics // Glob. Change Biol. 2009. V. 15. Iss. 6. P. 1570-1583
  15. Kullman L., Öberg L. Post-little Ice Age tree line rise and climate warming in the Swedish Scandes: a landscape ecological perspective //j. Ecol. 2009. V. 97. Iss. 3. P. 415-429
  16. Moiseev P. A., Hagedorn F., Balakin D. S., Bubnov M. O., Devi N. M., Kukarskih V. V., Mazepa V. S., Viyukhin S. O., Viyukhina A. A., Grigoriev A. A. Stand biomass at treeline ecotone in Russian Subarctic mountains is primarily related to species composition but its dynamics driven by improvement of climatic conditions // Forests. 2022. V. 13. Iss. 2. Article number 254. 21 p
  17. Myers-Smith I. H., Hik D. S. Climate warming as a driver of tundra shrubline advance //j. Ecol. 2018. V. 106. Iss. 2. P. 547-560
  18. Pauli H., Gottfried M., Dullinger S., Abdaladze O., Akhalatsi M., Alonso J. L. B., Coldea G., Dick J., Erschbamer B., Calzado R. F., Ghosn D., Holten J. I., Kanka R., Kazakis G., Kollár J., Larsson P., Moiseev P. A., Moiseev D. A., Molau U., Molero M. J., Nagy L., Pelino G., Puşcaş M., Rossi G., Stanisci A., Syverhuset A. O., Theurillat J. P., Tomaselli M., Unterluggauer P., Villar L., Vittoz P., Grabherr G. Recent plant diversity changes on Europe’s mountain summits // Science. 2012. V. 336. Iss. 6079. P. 353-355
  19. Sturm M., Racine C., Tape K. Climate change: increasing shrub abundance in the Arctic // Nature. 2001. V. 411. N. 6837. P. 546-547
  20. Terskaia A., Dial R. J., Sullivan P. F. Pathways of tundra encroachment by trees and tall shrubs in the Western Brooks Range of Alaska // Ecography. 2020. V. 43. Iss. 5. P. 769-778
  21. Van den Bergh T., Körner C., Hiltbrunner E. Alnus shrub expansion increases evapotranspiration in the Swiss Alps // Reg. Environ. Change. 2018. V. 18. Iss. 5. P. 1375-1385

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).