The Algorithm for constructing a digital fingerprint of a sensor based on a dynamic model of its output signal for data protection in automated systems

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The article considers the problem of an intruder’s interference in the technological (e.g. automated) system operation by replacing an endpoint device (sensor) or its signal; it also considers approaches to detecting such interference. A brief overview of existing methods for detecting device substitution is provided. As a solution to the problem, it is proposed to identify the device by comparing some of its current parameters with reference parameters collected in advance. For the purposes of identifying an endpoint device, the author proposes to compare digital fingerprints (current and reference ones) constructed using dynamic models of the signal of this device. The main requirements for the input data are formulated. Ways for preliminary improving the input data are proposed in case the data do not meet the above requirements. The algorithm for creating a digital fingerprint is described with a detailed explanation of the mathematical apparatus used; the algorithm is also presented in a flowchart form. The application of the algorithm for the identifying purposes both in laboratory conditions (using a specially created test bench) and on real data from the functioning microclimate analysis system of the Center of Digital Solutions for Smart Grid of the Institute of Control Sciences of the Russian Academy of Sciences is considered.

作者简介

Daria Bogacheva

V.A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences

编辑信件的主要联系方式.
Email: bogacheva@ipu.ru
ORCID iD: 0009-0005-9973-6986
SPIN 代码: 2780-6169
Scopus 作者 ID: 57946782400
Researcher ID: JXK-0730-2024

junior researcher, Laboratory No. 49 of Infrastructure Systems

俄罗斯联邦, Moscow

参考

  1. Bogacheva D., Lukinova O. The issues of the data correctness assessment for lower level devices in automated control systems. In: Proc. of the 32th International Scientific and Technical Conference “Security Systems – 2023” (Moscow). Moscow: AGPS EMERCOM of Russia. 2023. Pp. 349–355.
  2. Bogacheva D., Lukinova O., Pavlova E. The approach to assessing the correctness of automated system endpoint devices’ parameters using their reference models. In: Proceedings of the International Russian Smart Industry Conference “SmartIndustryCon”. Sochi: IEEE. 2024. Pp. 850–854.
  3. Bogacheva D., Lukinova O., Roschin A. Recognition of automated systems endpoint devices by their dynamic models. In: Proc. of the 33th International Scientific and Technical Conference “Security Systems – 2024” (Moscow). Moscow: AGPS EMERCOM of Russia. 2024. Vol. 2. Pp. 349–355.
  4. Graupe D. Identification of Systems. Moscow: World. 1979.
  5. Zakharchenko V. Monitoring the reliability of parameter values in automated control systems. In: Proc. of the 3rd All-Russian scientific and practical conference IMMOD-2007. St. Petersburg: ZNIITS. 2007. Vol. 1. Pp. 278–286.
  6. Zakharchenko V. Assessing the reliability of information support for hydraulic unit automated control systems based on function-oriented fuzzy mathematical models. Samara: SSTU. 2011.
  7. Lee R. Optimal estimation. identification. and control. Moscow: Science. 1966.
  8. Abas P., Chowdhury R., Idris A. Device identification using optimized digital footprints. IAES International Journal of Artificial Intelligence (IJ-AI). 2023. No. 12 (1). Pp. 232–240.
  9. Aleisa M., Alenizi A., Anantha Raman G.R. et al. Improving electricity theft detection using electricity information collection system and customers’ consumption patterns. Energy Exploration & Exploitation. 2024. No. 42 (5). Pp. 1684–1714.
  10. Aneja S., Aneja N., Bhargava B., Chowdhury R. Device fingerprinting using deep convolutional neural networks. International Journal of Communication Networks and Distributed Systems. 2022. Vol. 28. No. 2. Pp. 171–198.
  11. Aslam S., Javaid N., Javed M., Shehzad F. Electricity theft detection using big data and genetic algorithm in electric power systems // Electric Power Systems Research. 2022. No. 209. P. 107975.
  12. Ding N., Gao H., Ma H. et al. Real-time anomaly detection based on long short-Term memory and Gaussian Mixture Model // Computers & Electrical Engineering. 2019. No. 79. P. 106458.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. The algorithm for constructing a digital fingerprint of an automated system endpoint device

下载 (319KB)
3. Fig. 2. The test bench scheme

下载 (58KB)
4. Fig. 3. The statistics on the data collection interval length

下载 (715KB)
5. Fig. 4. The gaps in measurements (white stripes)

下载 (534KB)
6. Fig. 5. The data with errors

下载 (513KB)
7. Fig. 6. The dispersion of measurement samples discreteness

下载 (1MB)
8. Fig. 7. The examples of successful comparison of the device current model with the reference one

下载 (1MB)


许可 URL: https://www.urvak.ru/contacts/

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).