Reducing energy consumption of vertical take-off and landing unmanned aerial vehicle using hybrid technical solutions


如何引用文章

全文:

详细

The paper describes possibilities of increasing the energy efficiency and reducing the takeoff weight of unmanned medium-heavy vertical takeoff and landing aerial vehicles of the airplane type. The authors propose a new hybrid type of unmanned aerial vehicle with a hybrid propulsion system, its aerodynamic design, method of realization of vertical takeoff/landing and cruising mode of flight which make it possible to reduce the takeoff weight of the aircraft, the weight of the basic propulsion system and the mass growth factor in comparison with the existing unmanned aerial vehicle of similar class, made according to the previously known technical solutions. The authors propose a methodology for optimizing the parameters of the configuration of the unmanned aerial vehicle considering the peculiarities of the implementation of vertical takeoff. The paper presents calculations of characteristics of vertical takeoff and landing unmanned aerial vehicles of existing types and the new hybrid type. The authors give quantitative estimates of improving unmanned aerial vehicle characteristics due to the new proposed technical solutions.

作者简介

O. Lukyanov

Samara National Research University

编辑信件的主要联系方式.
Email: lukyanov.oe@ssau.ru

Candidate of Science (Engineering), Associate Professor of the Department of Aircraft Construction and Design

俄罗斯联邦

V. Hoang

Samara National Research University

Email: hunghoang2508@gmail.com
ORCID iD: 0009-0001-7714-0963

Postgraduate Student of the Department of Aircraft Construction and Design

俄罗斯联邦

V. Komarov

Samara National Research University

Email: vkomarov@ssau.ru
ORCID iD: 0009-0007-9313-5754

Doctor of Science (Engineering), Professor, Director of Research and Education Center for Aircraft Structures (REC-202)

俄罗斯联邦

D. Nazarov

Samara National Research University

Email: dvn69@mail.ru

Candidate of Science (Engineering), Associate Professor of the Department of Aircraft Construction and Design

俄罗斯联邦

E. Kurkin

Samara National Research University

Email: kurkin.ei@ssau.ru
ORCID iD: 0000-0002-0893-9878

Candidate of Science (Engineering), Associate Professor of the Department of Aircraft Construction and Design

俄罗斯联邦

J. Quijada Pioquinto

Samara National Research University

Email: hosekihada@yandex.ru

Postgraduate Student of the Department of Aircraft Construction and Design

俄罗斯联邦

V. Chertykovtseva

Samara National Research University

Email: chertykovceva.vo@ssau.ru

Postgraduate Student of the Department of Aircraft Construction and Design

俄罗斯联邦

参考

  1. Chugunova S.V., Shemetova O.V. Research of the market of unmanned aerial vehicles of Russia. Sb. materialov III Mezhdunarodnoy nauchno-prakticheskoy konferentsii tvorcheskoy molodezhi «Aktual'nye Problemy Aviatsii i Kosmonavtiki» (April, 10-14, 2017, Krasnoyarsk). V. 3. Krasnoyarsk: Siberian State Aerospace University Publ., 2017. P. 148-150. (In Russ.)
  2. Classifikatsiya BPLA [Classification of UAVs]. Available at: https://lasercomponents.ru/blog/klassifikacziya-bpla/
  3. Espinosa Barcenas O.U., Quijada Pioquinto J.G., Kurkina E., Lukyanov O. Multidisciplinary analysis and optimization method for conceptually designing of electric flying-wing unmanned aerial vehicles. Drones. 2022. V. 6, Iss. 10. doi: 10.3390/drones6100307
  4. Viktorin A., Senkerik R., Pluhacek M., Kadavy T., Jasek R. A lightweight SHADE-based algorithm for global optimization – liteSHADE. Lecture Notes in Electrical Engineering. 2020. V. 554. P. 197-206. doi: 10.1007/978-3-030-14907-9_20
  5. Pioquinto J.G.Q., Shakhov V.G. Improving the evolutionary aerodynamic optimization with Bezier-PARSEC parameterization using population size reduction methods. Proceedings of the 20th International Conference «Aviation and Cosmonautics» (November, 22-26, 2021, Moscow). Moscow: Pero Publ., 2021. P. 12. (In Russ.)
  6. Ali M.M., Zhu W.X. A penalty function-based differential evolution algorithm for constrained global optimization. Computational Optimization and Applications. 2013. V. 54. P. 707-739. doi: 10.1007/s10589-012-9498-3
  7. Badyagin A.A., Mukhamedov F.A. Proektirovanie legkikh samoletov [Design of light aircraft]. Moscow: Mashinostroenie Publ., 1978. 208 p.
  8. Torenbeek E. Advanced aircraft design: Conceptual design, analysis and optimization of subsonic civil airplanes. Hoboken, New Jersey: John Wiley & Sons, 2013. 436 p.
  9. Bratukhin I.P. Proektirovanie i konstruktsii vertoletov [Helicopter design and structures]. Moscow: Oborongiz Publ., 1955. 360 p.
  10. Raymer D. Aircraft design: A conceptual approach. American Institute of Aeronautics and Astronautics, 2018. 1062 p. doi: 10.2514/4.104909
  11. Roskam J. Airplane design. Part I: Preliminary sizing of airplanes. Design, Analysis and Research Corporation, 2015. 222 p.
  12. Wald Q.R. The aerodynamics of propellers. Progress in Aerospace Sciences. 2006. V. 42, Iss. 2. P. 85-128. doi: 10.1016/j.paerosci.2006.04.001
  13. Sedelnikov A., Kurkin E.I., Quijada Pioquinto J.G., Lukyanov O., Nazarov D., Chertykovtseva V., Kurkina E., Hoang V.H. Algorithm for propeller optimization based on differential evolution. Computation. 2024. V. 12, Iss. 3. doi: 10.3390/computation12030052
  14. Belotserkovskiy S.M. Tonkaya nesushchaya poverkhnost' v dozvukovom potoke gaza [Thin lifting surface in subsonic gas flow]. Moscow: Nauka Publ., 1965. 244 p.
  15. Katz J., Plotkin A. Low-speed aerodynamics: From wing theory to panel methods. McGraw-Hill, 1991. 656 p.
  16. Luk'yanov O.E., Kurkin E.I., Kuikhada Piokuinto Kh.G., Khoang V.Kh. Programma mnogodistsiplinarnoy optimizatsii bespilotnykh letatel'nykh apparatov vertikal'nogo vzleta i posadki s vintovym dvizhitelem «MOBLA 2.0» [Code of multidisciplinary optimization of unmanned aerial vehicles of vertical takeoff and landing with a helical propeller «MOBLA 2.0»]. Certificate of state registration of a computer program, no. 2024610971, 2024. (Publ. 16.01.2024)
  17. Budziak K. Aerodynamic analysis with athena vortex lattice (AVL). Hamburg University of Applied Sciences, 2015. 72 p.
  18. AVL overview. Available at: https://web.mit.edu/drela/Public/web/avl/

补充文件

附件文件
动作
1. JATS XML

版权所有 © VESTNIK of Samara University. Aerospace and Mechanical Engineering, 2024

Creative Commons License
此作品已接受知识共享署名-相同方式共享 4.0国际许可协议的许可

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).