Geoinformation Assessment of Erodibility of Arable Soils in the Republic of Tatarstan

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A methodology for automated mapping of soil erosion degrees in arable lands of the Republic of Tatarstan was developed with explicit consideration of soil typology using multi-year bare soil composites from Landsat imagery for the 1985–1995 period and machine learning algorithms. The study is based on 980 field soil-erosion survey points stratified across six soil groups: chernozems, gray forest soils, light-gray forest soils, dark-gray forest soils, sod-podzolic soils, and sod-carbonate soils. Soil type/subtype was included as a categorical predictor in both implemented models: a relief-oriented model combining fifteen spectral indices with morphometric terrain characteristics, and a spectral model using only optical surface properties. Application of CatBoost gradient boosting algorithm followed by isotonic calibration separately for each soil group achieved overall classification accuracy of 0.59–0.64, with the relief-oriented model demonstrating a determination coefficient of 0.58 versus 0.32 for the spectral model. Medium and severely eroded soils were recognized with 66–86% accuracy by both models regardless of soil type, while slightly eroded soils can't be reliably identified. The information content of the models was insufficient for reliable differentiation of uneroded and slightly eroded soils. This confirms the known limitation of medium-resolution multispectral data when recording the initial stages of erosion, when changes in the thickness of the humus horizon do not lead to a significant change in the spectral characteristics of the arable layer surface. Fifteen percent of eroded soils were detected on slopes less than 3°, indicating underestimation of erosion processes on gentle slopes or reflecting (in some cases) naturally shallow soil profiles characteristic of the region. Accounting for soil typology through categorical predictors and group-wise calibration substantially improved the quality of arable land erosion mapping.

作者简介

A. Gafurov

Kazan Federal University

Email: AMGafurov@kpfu.ru
Kazan, Russia

Zh. Buryak

Kazan Federal University

Email: buryakzh@gmail.com
Kazan, Russia

A. Avvakumova

Kazan Federal University

Email: avvakumova_alina@mail.ru
Kazan, Russia

参考

  1. Буряк Ж.А., Гафуров А.М. Оценка спектрально-отражательных свойств эродированных агропочв Республики Татарстан // Региональные геосистемы. 2025. Т. 49. № 3. (В печати).
  2. Buryak Zh.A., Gafurov A.M. Assessment of spectral-reflective properties of eroded agro-soils of the Republic of Tatarstan. Reg. Geosistemy, 2025, vol. 49, no. 3. (In Russ.). (In press).
  3. Егоров В.В., Иванова Е.Н., Фридланд В.М. Классификация и диагностика почв СССР. М.: Колос, 1977. 225 с.
  4. Egorov V.V., Ivanova E.N., Fridland V.M. Klassifikatsiya i diagnostika pochv SSSR [Classification and Diagnostics of Soils of the USSR]. Moscow: Kolos Publ., 1977. 225 p.
  5. Ермолаев О.П., Игонин М.Е., Бубнов А.Ю., Павлова С.В. Ландшафты Республики Татарстан. Региональный ландшафтно-экологический анализ. Казань: “Слово”, 2007. 411 с.
  6. Ermolaev O.P., Igonin M.E., Bubnov A.Yu., Pavlova S.V. Landshafty Respubliki Tatarstan. Regional’nyi landshaftno-ekologicheskii analiz [Landscapes of the Republic of Tatarstan. Regional Landscape-Ecological Analysis]. Kazan: Slovo Publ., 2007.
  7. Жидкин А.П., Комиссаров М.А., Шамшурина Е.Н., Мищенко А.В. Эрозия почв на Среднерусской возвышенности (обзор) // Почвоведение. 2023. № 2. C. 259–272. https://doi.org/10.31857/S0032180X22600901
  8. Zhidkin A.P., Komissarov M.A., Shamshurina E.N., Mishchenko A.V. Soil erosion in the central Russian upland: A review. Eurasian Soil Sci., 2023, vol. 56, pp. 226–237. https://doi.org/10.1134/S1064229322601743
  9. Иванов А.Л., Савин И.Ю., Столбовой В.С., Аветян С.А., Шишконакова Е.А., Каштанов А.Н. Карта агрогенной эродированности почв России // ДАН. Науки о Земле. 2020. T. 493. C. 99–102. https://doi.org/10.31857/s2686739720080095
  10. Ivanov A.L., Savin I.Yu., Stolbovoy V.S., Avetyan S.A., Shishkonakova E.A., Kashtanov A.N. Map of anthropogenic soil erosion of Russia. Dokl. Earth Sci., 2020, vol. 493, pp. 654–657. https://doi.org/10.1134/S1028334X20080097
  11. Иванов М.А., Гафуров А.М. Анализ изменений землепользования в Среднем Поволжье по данным Landsat для оценки потенциала возврата заброшенных пахотных земель в сельскохозяйственный оборот // Современные проблемы дистанционного зондирования земли из космоса. 2025. Т. 22. № 2. С. 186–201. https://doi.org/10.21046/2070-7401-2025-22-2-186-201
  12. Ivanov M.A., Gafurov A.M. Analysis of land use changes in the Middle Volga Region using Landsat data to assess the potential of returning abandoned arable land to agricultural turnover. Sovrem. Probl. Distants. Zondir. Zemli Kosmosa, 2025, vol. 22, no. 2, pp. 186–201. (In Russ.). https://doi.org/10.21046/2070-7401-2025-22-2-186-201
  13. Общесоюзная инструкция по почвенным обследованиям и составлению крупномасштабных почвенных карт землепользований / под ред. Т.А. Ищенко. М.: Колос, 1973. 73 с.
  14. Obshchesoyuznaya instruktsiya po pochvennym obsledovaniyam i sostavleniyu krupnomasshtabnykh pochvennykh kart zemlepol’zovaniya [All-Union Instruction on Soil Surveys and Preparation of Large-Scale Soil Maps of Land Use]. Ishchenko T.A., Ed. Moscow: Kolos Publ., 1973.
  15. Рухович Д.И., Королева П.В., Калинина Н.В., Вильчевская Е.В., Сулейман Г.А., Черноусенко Г.И. Детектирование деградированных участков пашни на основе анализа больших спутниковых данных // Почвоведение. 2021. № 2. С. 151–167. https://doi.org/10.31857/S0032180X21020131
  16. Rukhovich D.I., Koroleva P.V., Kalinina N.V., Vil’chevskaya E.V., Suleiman G.A., Chernousenko G.I. Detecting degraded arable land on the basis of remote sensing big data analysis. Eurasian Soil Sci., 2021, vol. 54, pp. 161–175. https://doi.org/10.1134/S1064229321020137
  17. Bezak N., Borrelli P., Mikoš M., Jemec Auflič M., Panagos P. Towards multi-model soil erosion modelling: An evaluation of the erosion potential method (EPM) for global soil erosion assessments // CATENA. 2024. Vol. 234. Art. 107596. https://doi.org/10.1016/j.catena.2023.107596
  18. Chabrillat S., Ben-Dor E., Cierniewski J., Gomez C., Schmid T., van Wesemael B. Imaging Spectroscopy for Soil Mapping and Monitoring // Surv. Geophys. 2019. Vol. 40. № 3. P. 361–399. https://doi.org/10.1007/s10712-019-09524-0
  19. Chander G., Markham B.L., Helder D.L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors // Remote Sens. Environ. 2009. Vol. 113. № 5. P. 893–903. https://doi.org/10.1016/j.rse.2009.01.007
  20. Doxani G., Vermote E.F., Roger J.C., et al. Atmospheric Correction Inter-comparison eXercise, ACIX-II Land: An assessment of atmospheric correction processors for Landsat 8 and Sentinel-2 over land // Remote Sens. Environ. 2023. Vol. 285. Art. 113412. https://doi.org/10.1016/j.rse.2022.113412
  21. Dvorakova K., Heiden U., Pepers K., Staats G., Van Os G., Van Wesemael B. Improving soil organic carbon predictions from a Sentinel–2 soil composite by assessing surface conditions and uncertainties // Geoderma. 2023. Vol. 429. Art. 116128. https://doi.org/10.1016/j.geoderma.2022.116128
  22. Gholami H., Darvishi E., Moradi N., Mohammadifar A., Song Y., Li Y., Niu B., Kaskaoutis D., Pradhan B. An interpretable (explainable) model based on machine learning and SHAP interpretation technique for mapping wind erosion hazard // Environ. Sci. Pollut. Res. Int. 2024. Vol. 31. № 56. P. 64628–64643. https://doi.org/10.1007/s11356-024-35521-x
  23. Golosov V.N., Paramonova T., Kust G., Litvin L., Andreeva O. Identification of Soil Resources Problems in European Russia // Global Degradation of Soil and Water Resources. Regional Assessment and Strategies. Singapore: Springer, 2022. P. 449–473. https://doi.org/10.1007/978-981-16-7916-2_29
  24. Hawker L., Uhe P., Paulo L., Sosa J., Savage J., Sampson C., Neal J. A 30 m global map of elevation with forests and buildings removed (FABDEM) // Environ. Res. Let. 2022. Vol. 17. Art. 024016. https://doi.org/10.1088/1748-9326/ac4d4f
  25. Lackoóvá L., Lieskovský J., Nikseresht F., Halabuk A., Hilbert H., Halászová K., Bahreini F. Unlocking the Potential of Remote Sensing in Wind Erosion Studies: A Review and Outlook for Future Directions // Remote Sens. 2023. Vol. 15. № 13. Art. 3316. https://doi.org/10.3390/rs15133316
  26. Laonamsai J., Julphunthong P., Saprathet T., Kimmany B., Ganchanasuragit T., Chomcheawchan P., Tomun N. Utilizing NDWI, MNDWI, SAVI, WRI, and AWEI for Estimating Erosion and Deposition in Ping River in Thailand // Hydrology. 2023. Vol. 10. № 3. Art. 70. https://doi.org/10.3390/hydrology10030070
  27. Liu Y., Meng Q., Zhang L., Wu C. NDBSI: A normalized difference bare soil index for remote sensing to improve bare soil mapping accuracy in urban and rural areas // CATENA. 2022. Vol. 214. Art. 106265. https://doi.org/10.1016/j.catena.2022.106265
  28. Manić M., Đorđević M., Đokić M., Dragović R., Kićović D., Đorđević D., Jović M., Smičiklas I., Dragović S. Remote Sensing and Nuclear Techniques for Soil Erosion Research in Forest Areas: Case Study of the Crveni Potok Catchment // Front. Environ. Sci. 2022. Vol. 10. https://doi.org/10.3389/fenvs.2022.897248
  29. Metternicht G.I., Zinck J.A. Evaluating the information content of JERS-1 SAR and Landsat TM data for discrimination of soil erosion features // J. Photogram. Remote Sens. 1998. Vol. 53. № 3. P. 143–153. https://doi.org/10.1016/S0924-2716(98)00004-5
  30. Milewski R., Schmid T., Chabrillat S., Jiménez M., Escribano P., Pelayo M., Ben-Dor E. Analyses of the Impact of Soil Conditions and Soil Degradation on Vegetation Vitality and Crop Productivity Based on Airborne Hyperspectral VNIR–SWIR–TIR Data in a Semi-Arid Rainfed Agricultural Area (Camarena, Central Spain) // Remote Sens. 2022. Vol. 14. № 20. Art. 5131. https://doi.org/10.3390/rs14205131
  31. Moore I.D., Grayson R.B., Ladson A.R. Digital terrain modelling: A review of hydrological, geomorphological, and biological applications // Hydrol. Process. 1991. Vol. 5 (1). P. 3–30. https://doi.org/10.1002/hyp.3360050103
  32. Mubonderi N., Manyevere A., Mashamaite C.V., Abd Elbasit M.A.M. Optical remote sensing for monitoring soil erosion in sub-Saharan grassland biomes: a systematic review // Environ. Monitor. Assess. 2025. Vol. 197. № 8. Art. 976. https://doi.org/10.1007/s10661-025-14426-3
  33. Mzid N., Pignatti S., Huang W., Casa R. An Analysis of Bare Soil Occurrence in Arable Croplands for Remote Sensing Topsoil Applications // Remote Sens. 2021. Vol. 13 (3). Art. 474. https://doi.org/10.3390/rs13030474
  34. Nguyen C.T., Chidthaisong A., Kieu Diem P., Huo L.Z. A Modified Bare Soil Index to Identify Bare Land Features during Agricultural Fallow-Period in Southeast Asia Using Landsat 8 // Land. 2021. Vol. 10 (3). Art. 231. https://doi.org/10.3390/land10030231
  35. Notesco G., Weksler S., Ben-Dor E. Mineral Classification of Soils Using Hyperspectral Longwave Infrared (LWIR) Ground-Based Data // Remote Sens. 2019. Vol. 11. № 12. Art. 1429. https://doi.org/10.3390/rs11121429
  36. Pichler V., Gömöryová E., Leuschner C., Homolák M., Abrudan I.V., Pichlerová M., Střelcová K., Di Filippo A., Sitko R. Parent Material Effect on Soil Organic Carbon Concentration under Primeval European Beech Forests at a Regional Scale // Forests. 2021. Vol. 12. № 4. Art. 405. https://doi.org/10.3390/f12040405
  37. Polovina S., Radić B., Ristić R., Milčanović V. Application of Remote Sensing for Identifying Soil Erosion Processes on a Regional Scale: An Innovative Approach to Enhance the Erosion Potential Model // Remote Sens. 2024. Vol. 16. № 13. Art. 2390. https://doi.org/10.3390/rs16132390
  38. Prokhorenkova L., Gusev G., Vorobev A., Dorogush A.V., Gulin A. CatBoost: unbiased boosting with categorical features // arXiv. Jun 28, 2017. https://arxiv.org/abs/1706.09516
  39. Romanovskaya A.Y., Savin I.Y. Modern techniques for monitoring wind soil erosion // Dokuchaev Soil Bul. 2020. № 104. P. 110–157. https://doi.org/10.19047/0136-1694-2020-104-110-157
  40. Wang J., Yang J., Li Z., Ke L., Li Q., Fan J., Wang X. Research on Soil Erosion Based on Remote Sensing Technology: A Review // Agriculture. 2024. Vol. 15. № 1. Art. 18. https://doi.org/10.3390/agriculture15010018
  41. Wang J., Zhen J., Hu W., Chen S., Lizaga I., Zeraatpisheh M., Yang X. Remote sensing of soil degradation: Progress and perspective // Int. Soil Water Conserv. Res. 2023. Vol. 11. № 3. P. 429–454. https://doi.org/10.1016/j.iswcr.2023.03.002
  42. Zadrozny B., Elkan C. Transforming classifier scores into accurate multiclass probability estimates // KDD. 2002. P. 694–699. https://doi.org/10.1145/775047.775151
  43. Zhao J., Du D., Chen L., Liang X., Chen H., Jin Y. HA-Net for Bare Soil Extraction Using Optical Remote Sensing Images // Remote Sens. 2024. Vol. 16. № 16. Art. 3088. https://doi.org/10.3390/rs16163088

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).