Tactility as an implementation of the principle of visuality in higher education in the conditions of digital fatigue
- Authors: Ushakova O.M.1, Strelnikov S.S.1, Kupriyanova A.I.2
-
Affiliations:
- Tyumen State Medical University
- Tyumen State University
- Issue: Vol 16, No 5 (2025)
- Pages: 23-45
- Section: Educational and Pedagogical Studies
- Published: 31.10.2025
- URL: https://medbiosci.ru/2658-4034/article/view/363390
- DOI: https://doi.org/10.12731/2658-4034-2025-16-5-805
- EDN: https://elibrary.ru/KXJYWH
- ID: 363390
Cite item
Full Text
Abstract
Background. Contemporary students (Generations Z and Alpha) exhibit widespread digital fatigue due to excessive screen exposure, resulting in attention deficits and diminished cognitive engagement. Concurrently, higher education, particularly within the natural sciences, faces a critical deficit in tactile learning tools that supply essential sensory-motor experience for comprehending complex systems. This deficit impedes the visualization principle’s effective application.
Purpose – to establish theoretically and empirically validate the concept of “tactility” as a pedagogical approach for implementing the visualization principle in higher education, countering the challenges posed by digital fatigue.
Materials and methods. The research utilized a dual-method approach: 1) theoretical analysis of pedagogical frameworks (Montessori, embodied cognition, Kolb's experiential learning), cognitive load theory, and neuroscience literature concerning sensory integration, drawing upon Russian and international publications; 2) empirical assessment of tactile tools conducted during the “Medical and Biological Physics” course at Tyumen State Medical University throughout the 2024/25 academic year.
Results. 1) tactility is fundamentally grounded in major learning theories, fostering autonomy, concrete experience, embodied knowledge integration, and diminished cognitive load; 2) prevalent digital fatigue among students manifests as screen exhaustion, procrastination, and reduced well-being, generating a distinct demand for non-digital pedagogical methods such as tactile learning; 3) empirical deployment of tactile tools (e.g., molecular constructors, wire protein models, hydrogel balls, glass spheres) demonstrated efficacy in enhancing student engagement, facilitating conceptual understanding (e.g., entropy, protein folding, diffusion, optics), and delivering critical sensory-motor feedback in biological physics. The integration of tactile tools into higher education constitutes an efficient strategy to mitigate digital fatigue, enrich sensory-motor experience and improve the visualization and comprehension of complex natural science subjects.
About the authors
Olga M. Ushakova
Tyumen State Medical University
Author for correspondence.
Email: uschakova.om@yandex.ru
ORCID iD: 0000-0002-2247-9003
SPIN-code: 7021-8298
Candidate of Philosophical Sciences, Associate Professor, Department of Medical Informatics and Biological Physics
Russian Federation, 54, Odesskaya Str., Tyumen, 625048, Russian Federation
Sergey S. Strelnikov
Tyumen State Medical University
Email: sss15@yandex.ru
ORCID iD: 0000-0002-3092-0022
SPIN-code: 1344-3897
Candidate of Philosophical Sciences, Associate Professor, Department of Medical Informatics and Biological Physics
Russian Federation, 54, Odesskaya Str., Tyumen, 625048, Russian Federation
Asya I. Kupriyanova
Tyumen State University
Email: tmn.solo@gmail.com
ORCID iD: 0009-0004-8638-3897
SPIN-code: 7503-4622
Candidate of Philological Sciences, Associate Professor, Department of Age-Related Physiology, Special and Inclusive Education
Russian Federation, 9, Respubliki Str., Tyumen, 625003, Russian Federation
References
- Golubkina, K. V., & Abramyan, S. K. (2024). The use of gadgets in the student environment and their impact on students’ health. Problems of Social Hygiene, Public Health and History of Medicine, 32(S1), 577–581. https://doi.org/10.32687/0869-866X-2024-32-s1-577-581. EDN: https://elibrary.ru/OGAJKN
- Gonoskova, O. B. (2016). Implementation of M. Montessori’s ideas in higher education. Human Capital, (9), 88–92. EDN: https://elibrary.ru/WTBDXV
- Zalivansky, B. V., Samokhvalova, E. V., & Moreeva, E. V. (2025). The impact of digital addiction on the social health of youth. Problems of Social Hygiene, Public Health and History of Medicine, 33(2), 182–187. https://doi.org/10.32687/0869-866X-2025-33-2-182-187. EDN: https://elibrary.ru/AFSXMQ
- Montessori, M. (2011). The absorbent mind of the child (320 pp.). Saint Petersburg: Charitable Foundation “Volunteers”.
- Popov, V. I., Milushkina, O. Yu., Skoblina, N. A. et al. (2022). The impact of social media use on the formation of internet addiction among medical students. Public Health and Life Environment, 30(8), 51–56. https://doi.org/10.35627/2219-5238/2022-30-8-51-56. EDN: https://elibrary.ru/EFABJM
- Ratner, F. L., & Yusupova, A. Yu. (2010). M. Montessori’s pedagogy in higher education. Education and SelfDevelopment, (4), 159–164. EDN: https://elibrary.ru/PBSYZL
- Strelnikov, S. S. (2022). Electronic information and educational environment: Factors of conceptualizing the notion. Perspectives of Science, (12), 215–217. EDN: https://elibrary.ru/ONZBLL
- Butler, T. (2024). A critical review of digital technology in education: A pause for thought in 2024. https://doi.org/10.31235/osf.io/5q8vg
- Chen, Y., & Qin, X. (2024). Student fatigue and its impact on teaching effectiveness based on online teaching. Education and Information Technologies, 29(8), 10177–10200. https://doi.org/10.1007/s10639-023-12197-3. EDN: https://elibrary.ru/MHVDCJ
- Faella, P., Digennaro, S., & Iannaccone, A. (2025). Educational practices in motion: A scoping review of embodied learning approaches in school. Frontiers in Education, 10, 1568744. https://doi.org/10.3389/feduc.2025.1568744
- Holman, L. E. (2021). Crossing the generational and digital divide: Accommodating the learning experience of Generation Z. Morehead State Theses and Dissertations (870 с.). Получено из: https://scholarworks.moreheadstate.edu/msu_theses_dissertations/870
- Idkhan, A. M., & Idris, M. M. (2021). Dimensions of students learning styles at the university with the Kolb learning model. International Journal of Environment, Engineering & Education, 3(2), 75–82. https://doi.org/10.55151/ijeedu.v3i2.60. EDN: https://elibrary.ru/UCWRWE
- Kaur, K. et al. (2022). Digital eye strain – A comprehensive review. Ophthalmology and Therapy, 11(5), 1655–1680. https://doi.org/10.1007/s40123-022-00540-9. EDN: https://elibrary.ru/HEFQXV
- Ko, J. Y., & Ju, Yeo. (2022). The effect of digital fatigue on retro & newtro product attitudes: Focused on mediation effect of nostalgia. Journal of Korea Parliamentary Law Institute, 15(2), 19–32. https://doi.org/10.56352/smj.2022.15.2.02. EDN: https://elibrary.ru/BRVVVA
- Kolb, D. A. (1984). Experiential learning: Experience as the source of learning and development. Englewood Cliffs, NJ: Prentice Hall.
- Lindgren, R., Morphew, J. W., Kang, J., Planey, J., & Mestre, J. P. (2022). Learning and transfer effects of embodied simulations targeting crosscutting concepts in science. Journal of Educational Psychology, 114(3), 462–481. https://doi.org/10.1037/edu0000697. EDN: https://elibrary.ru/LEWZMN
- Lyu, C., & Deng, S. (2024). Effectiveness of embodied learning on learning performance: A metaanalysis based on the cognitive load theory perspective. Learning and Individual Differences, 116, 102564. https://doi.org/10.1016/j.lindif.2024.102564. EDN: https://elibrary.ru/GZRBPI
- Macrine, S. L., & Fugate, J. M. B. (2021). Translating embodied cognition for embodied learning in the classroom. Frontiers in Education, 6, 712626. https://doi.org/10.3389/feduc.2021.712626. EDN: https://elibrary.ru/JHBJAF
- Müller, C. H., Reiher, M., & Kapur, M. (2024). Embodied preparation for learning basic quantum chemistry: A mixedmethod study. Journal of Computer Assisted Learning, 40(2), 715–730. https://doi.org/10.1111/jcal.12909. EDN: https://elibrary.ru/KDMCEP
- Murray, A. K., Miller, M., Postlewaite, E. L., & Clark, K. (2022). Implementing the Montessori approach in an undergraduate marketing course: A case study. Frontiers in Education, 7, 1033752. https://doi.org/10.3389/feduc.2022.1033752. EDN: https://elibrary.ru/APEYPT
- Onjewu, A.-K. E., Godwin, E. S., Azizsafaei, F., & Appiah, D. (2025). The influence of technology use on learning skills among Generation Z: A gender and crosscountry analysis. Industry and Higher Education, 39(2), 139–157. https://doi.org/10.1177/09504222241263227. EDN: https://elibrary.ru/ATTPHS
- Rau, M. A., & Herder, T. (2021). Under which conditions are physical versus virtual representations effective? Contrasting conceptual and embodied mechanisms of learning. Journal of Educational Psychology, 113(8), 1565–1586. https://doi.org/10.1037/edu0000689. EDN: https://elibrary.ru/FFSSOV
- Risko, E. F., & Gilbert, S. J. (2016). Cognitive offloading. Trends in Cognitive Sciences, 20(9), 676–688. https://doi.org/10.1016/j.tics.2016.07.002
- RomeroRodríguez, J.-M., HinojoLucena, F.-J., Kopecký, K., & GarcíaGonzález, A. (2023). Fatiga digital en estudiantes universitarios como consecuencia de la enseñanza online durante la pandemia Covid19. Educación XX1, 26(2), 165–184. https://doi.org/10.5944/educxx1.34530. EDN: https://elibrary.ru/UVGECK
- Rudolph, C. W., Rauvola, R. S., Costanza, D. P., & Zacher, H. (2021). Generations and generational differences: Debunking myths in organizational science and practice and paving new paths forward. Journal of Business and Psychology, 36(6), 945–967. https://doi.org/10.1007/s10869-020-09715-2. EDN: https://elibrary.ru/HDWRLY
- Shenoy, P., & Kumar, T. (2024). A humancentred tactile perception device for enhanced learning. Procedia CIRP, 128, 43–48. https://doi.org/10.1016/j.procir.2 Newton 2024.06.005. EDN: https://elibrary.ru/QIRSUS
- Solomon, F. et al. (2022). Embodied physics: Utilizing dance resources for learning and engagement in STEM. Journal of the Learning Sciences, 31(1), 73–106. https://doi.org/10.1080/10508406.2021.2023543. EDN: https://elibrary.ru/SWTKWL
- Sweller, J. (2011). Cognitive load theory. В Psychology of learning and motivation (Vol. 55, с. 37–76). Elsevier. https://doi.org/10.1016/B978-0-12-387691-1.00002-8
- Tabrik, S. et al. (2021). Visual and tactile sensory systems share common features in object recognition. ENeuro, 8(5), ENEURO.010121.2021. https://doi.org/10.1523/ENEURO.0101-21.2021. EDN: https://elibrary.ru/IQNUIU
- Thomas Jha, R., & Price, S. (2022). Embodying science: The role of the body in supporting young children’s meaning making. International Journal of Science Education, 44(10), 1659–1679. https://doi.org/10.1080/09500693.2022.2089366. EDN: https://elibrary.ru/EUNPDK
- Tschanz, J. T., & Hammond, A. G. (2020). A Montessoribased approach to treat behavioral and psychological symptoms in dementia. International Psychogeriatrics, 32(3), 303–306. https://doi.org/10.1017/S1041610220000149. EDN: https://elibrary.ru/EKXHKK
- Yosep, I., Sakti, D. W., Mardhiyah, A., Maulana, I., Hernawaty, T., & Lukman, M. (2024). Screen fatigue during online learning among first grade of nursing students. Jurnal Keperawatan Komprehensif (Comprehensive Nursing Journal), 10(2). https://doi.org/10.33755/jkk.v10i2.631. EDN: https://elibrary.ru/ENNUVC
- Zrudlo, I. (2023). Why the learning styles myth appeals and how to persuade believers otherwise. Teaching and Teacher Education, 132, 104266. https://doi.org/10.1016/j.tate.2023.104266. EDN: https://elibrary.ru/FNPFFP
Supplementary files


